aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/rtc/rtc-ac100.c
blob: 0e358d4b67384b1de1a374d7cae9d010ade8387f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
/*
 * RTC Driver for X-Powers AC100
 *
 * Copyright (c) 2016 Chen-Yu Tsai
 *
 * Chen-Yu Tsai <wens@csie.org>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 */

#include <linux/bcd.h>
#include <linux/clk-provider.h>
#include <linux/device.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/mfd/ac100.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/regmap.h>
#include <linux/rtc.h>
#include <linux/types.h>

/* Control register */
#define AC100_RTC_CTRL_24HOUR	BIT(0)

/* Clock output register bits */
#define AC100_CLKOUT_PRE_DIV_SHIFT	5
#define AC100_CLKOUT_PRE_DIV_WIDTH	3
#define AC100_CLKOUT_MUX_SHIFT		4
#define AC100_CLKOUT_MUX_WIDTH		1
#define AC100_CLKOUT_DIV_SHIFT		1
#define AC100_CLKOUT_DIV_WIDTH		3
#define AC100_CLKOUT_EN			BIT(0)

/* RTC */
#define AC100_RTC_SEC_MASK	GENMASK(6, 0)
#define AC100_RTC_MIN_MASK	GENMASK(6, 0)
#define AC100_RTC_HOU_MASK	GENMASK(5, 0)
#define AC100_RTC_WEE_MASK	GENMASK(2, 0)
#define AC100_RTC_DAY_MASK	GENMASK(5, 0)
#define AC100_RTC_MON_MASK	GENMASK(4, 0)
#define AC100_RTC_YEA_MASK	GENMASK(7, 0)
#define AC100_RTC_YEA_LEAP	BIT(15)
#define AC100_RTC_UPD_TRIGGER	BIT(15)

/* Alarm (wall clock) */
#define AC100_ALM_INT_ENABLE	BIT(0)

#define AC100_ALM_SEC_MASK	GENMASK(6, 0)
#define AC100_ALM_MIN_MASK	GENMASK(6, 0)
#define AC100_ALM_HOU_MASK	GENMASK(5, 0)
#define AC100_ALM_WEE_MASK	GENMASK(2, 0)
#define AC100_ALM_DAY_MASK	GENMASK(5, 0)
#define AC100_ALM_MON_MASK	GENMASK(4, 0)
#define AC100_ALM_YEA_MASK	GENMASK(7, 0)
#define AC100_ALM_ENABLE_FLAG	BIT(15)
#define AC100_ALM_UPD_TRIGGER	BIT(15)

/*
 * The year parameter passed to the driver is usually an offset relative to
 * the year 1900. This macro is used to convert this offset to another one
 * relative to the minimum year allowed by the hardware.
 *
 * The year range is 1970 - 2069. This range is selected to match Allwinner's
 * driver.
 */
#define AC100_YEAR_MIN				1970
#define AC100_YEAR_MAX				2069
#define AC100_YEAR_OFF				(AC100_YEAR_MIN - 1900)

struct ac100_clkout {
	struct clk_hw hw;
	struct regmap *regmap;
	u8 offset;
};

#define to_ac100_clkout(_hw) container_of(_hw, struct ac100_clkout, hw)

#define AC100_RTC_32K_NAME	"ac100-rtc-32k"
#define AC100_RTC_32K_RATE	32768
#define AC100_CLKOUT_NUM	3

static const char * const ac100_clkout_names[AC100_CLKOUT_NUM] = {
	"ac100-cko1-rtc",
	"ac100-cko2-rtc",
	"ac100-cko3-rtc",
};

struct ac100_rtc_dev {
	struct rtc_device *rtc;
	struct device *dev;
	struct regmap *regmap;
	int irq;
	unsigned long alarm;

	struct clk_hw *rtc_32k_clk;
	struct ac100_clkout clks[AC100_CLKOUT_NUM];
	struct clk_hw_onecell_data *clk_data;
};

/**
 * Clock controls for 3 clock output pins
 */

static const struct clk_div_table ac100_clkout_prediv[] = {
	{ .val = 0, .div = 1 },
	{ .val = 1, .div = 2 },
	{ .val = 2, .div = 4 },
	{ .val = 3, .div = 8 },
	{ .val = 4, .div = 16 },
	{ .val = 5, .div = 32 },
	{ .val = 6, .div = 64 },
	{ .val = 7, .div = 122 },
	{ },
};

/* Abuse the fact that one parent is 32768 Hz, and the other is 4 MHz */
static unsigned long ac100_clkout_recalc_rate(struct clk_hw *hw,
					      unsigned long prate)
{
	struct ac100_clkout *clk = to_ac100_clkout(hw);
	unsigned int reg, div;

	regmap_read(clk->regmap, clk->offset, &reg);

	/* Handle pre-divider first */
	if (prate != AC100_RTC_32K_RATE) {
		div = (reg >> AC100_CLKOUT_PRE_DIV_SHIFT) &
			((1 << AC100_CLKOUT_PRE_DIV_WIDTH) - 1);
		prate = divider_recalc_rate(hw, prate, div,
					    ac100_clkout_prediv, 0);
	}

	div = (reg >> AC100_CLKOUT_DIV_SHIFT) &
		(BIT(AC100_CLKOUT_DIV_WIDTH) - 1);
	return divider_recalc_rate(hw, prate, div, NULL,
				   CLK_DIVIDER_POWER_OF_TWO);
}

static long ac100_clkout_round_rate(struct clk_hw *hw, unsigned long rate,
				    unsigned long prate)
{
	unsigned long best_rate = 0, tmp_rate, tmp_prate;
	int i;

	if (prate == AC100_RTC_32K_RATE)
		return divider_round_rate(hw, rate, &prate, NULL,
					  AC100_CLKOUT_DIV_WIDTH,
					  CLK_DIVIDER_POWER_OF_TWO);

	for (i = 0; ac100_clkout_prediv[i].div; i++) {
		tmp_prate = DIV_ROUND_UP(prate, ac100_clkout_prediv[i].val);
		tmp_rate = divider_round_rate(hw, rate, &tmp_prate, NULL,
					      AC100_CLKOUT_DIV_WIDTH,
					      CLK_DIVIDER_POWER_OF_TWO);

		if (tmp_rate > rate)
			continue;
		if (rate - tmp_rate < best_rate - tmp_rate)
			best_rate = tmp_rate;
	}

	return best_rate;
}

static int ac100_clkout_determine_rate(struct clk_hw *hw,
				       struct clk_rate_request *req)
{
	struct clk_hw *best_parent;
	unsigned long best = 0;
	int i, num_parents = clk_hw_get_num_parents(hw);

	for (i = 0; i < num_parents; i++) {
		struct clk_hw *parent = clk_hw_get_parent_by_index(hw, i);
		unsigned long tmp, prate = clk_hw_get_rate(parent);

		tmp = ac100_clkout_round_rate(hw, req->rate, prate);

		if (tmp > req->rate)
			continue;
		if (req->rate - tmp < req->rate - best) {
			best = tmp;
			best_parent = parent;
		}
	}

	if (!best)
		return -EINVAL;

	req->best_parent_hw = best_parent;
	req->best_parent_rate = best;
	req->rate = best;

	return 0;
}

static int ac100_clkout_set_rate(struct clk_hw *hw, unsigned long rate,
				 unsigned long prate)
{
	struct ac100_clkout *clk = to_ac100_clkout(hw);
	int div = 0, pre_div = 0;

	do {
		div = divider_get_val(rate * ac100_clkout_prediv[pre_div].div,
				      prate, NULL, AC100_CLKOUT_DIV_WIDTH,
				      CLK_DIVIDER_POWER_OF_TWO);
		if (div >= 0)
			break;
	} while (prate != AC100_RTC_32K_RATE &&
		 ac100_clkout_prediv[++pre_div].div);

	if (div < 0)
		return div;

	pre_div = ac100_clkout_prediv[pre_div].val;

	regmap_update_bits(clk->regmap, clk->offset,
			   ((1 << AC100_CLKOUT_DIV_WIDTH) - 1) << AC100_CLKOUT_DIV_SHIFT |
			   ((1 << AC100_CLKOUT_PRE_DIV_WIDTH) - 1) << AC100_CLKOUT_PRE_DIV_SHIFT,
			   (div - 1) << AC100_CLKOUT_DIV_SHIFT |
			   (pre_div - 1) << AC100_CLKOUT_PRE_DIV_SHIFT);

	return 0;
}

static int ac100_clkout_prepare(struct clk_hw *hw)
{
	struct ac100_clkout *clk = to_ac100_clkout(hw);

	return regmap_update_bits(clk->regmap, clk->offset, AC100_CLKOUT_EN,
				  AC100_CLKOUT_EN);
}

static void ac100_clkout_unprepare(struct clk_hw *hw)
{
	struct ac100_clkout *clk = to_ac100_clkout(hw);

	regmap_update_bits(clk->regmap, clk->offset, AC100_CLKOUT_EN, 0);
}

static int ac100_clkout_is_prepared(struct clk_hw *hw)
{
	struct ac100_clkout *clk = to_ac100_clkout(hw);
	unsigned int reg;

	regmap_read(clk->regmap, clk->offset, &reg);

	return reg & AC100_CLKOUT_EN;
}

static u8 ac100_clkout_get_parent(struct clk_hw *hw)
{
	struct ac100_clkout *clk = to_ac100_clkout(hw);
	unsigned int reg;

	regmap_read(clk->regmap, clk->offset, &reg);

	return (reg >> AC100_CLKOUT_MUX_SHIFT) & 0x1;
}

static int ac100_clkout_set_parent(struct clk_hw *hw, u8 index)
{
	struct ac100_clkout *clk = to_ac100_clkout(hw);

	return regmap_update_bits(clk->regmap, clk->offset,
				  BIT(AC100_CLKOUT_MUX_SHIFT),
				  index ? BIT(AC100_CLKOUT_MUX_SHIFT) : 0);
}

static const struct clk_ops ac100_clkout_ops = {
	.prepare	= ac100_clkout_prepare,
	.unprepare	= ac100_clkout_unprepare,
	.is_prepared	= ac100_clkout_is_prepared,
	.recalc_rate	= ac100_clkout_recalc_rate,
	.determine_rate	= ac100_clkout_determine_rate,
	.get_parent	= ac100_clkout_get_parent,
	.set_parent	= ac100_clkout_set_parent,
	.set_rate	= ac100_clkout_set_rate,
};

static int ac100_rtc_register_clks(struct ac100_rtc_dev *chip)
{
	struct device_node *np = chip->dev->of_node;
	const char *parents[2] = {AC100_RTC_32K_NAME};
	int i, ret;

	chip->clk_data = devm_kzalloc(chip->dev, sizeof(*chip->clk_data) +
						 sizeof(*chip->clk_data->hws) *
						 AC100_CLKOUT_NUM,
						 GFP_KERNEL);
	if (!chip->clk_data)
		return -ENOMEM;

	chip->rtc_32k_clk = clk_hw_register_fixed_rate(chip->dev,
						       AC100_RTC_32K_NAME,
						       NULL, 0,
						       AC100_RTC_32K_RATE);
	if (IS_ERR(chip->rtc_32k_clk)) {
		ret = PTR_ERR(chip->rtc_32k_clk);
		dev_err(chip->dev, "Failed to register RTC-32k clock: %d\n",
			ret);
		return ret;
	}

	parents[1] = of_clk_get_parent_name(np, 0);
	if (!parents[1]) {
		dev_err(chip->dev, "Failed to get ADDA 4M clock\n");
		return -EINVAL;
	}

	for (i = 0; i < AC100_CLKOUT_NUM; i++) {
		struct ac100_clkout *clk = &chip->clks[i];
		struct clk_init_data init = {
			.name = ac100_clkout_names[i],
			.ops = &ac100_clkout_ops,
			.parent_names = parents,
			.num_parents = ARRAY_SIZE(parents),
			.flags = 0,
		};

		of_property_read_string_index(np, "clock-output-names",
					      i, &init.name);
		clk->regmap = chip->regmap;
		clk->offset = AC100_CLKOUT_CTRL1 + i;
		clk->hw.init = &init;

		ret = devm_clk_hw_register(chip->dev, &clk->hw);
		if (ret) {
			dev_err(chip->dev, "Failed to register clk '%s': %d\n",
				init.name, ret);
			goto err_unregister_rtc_32k;
		}

		chip->clk_data->hws[i] = &clk->hw;
	}

	chip->clk_data->num = i;
	ret = of_clk_add_hw_provider(np, of_clk_hw_onecell_get, chip->clk_data);
	if (ret)
		goto err_unregister_rtc_32k;

	return 0;

err_unregister_rtc_32k:
	clk_unregister_fixed_rate(chip->rtc_32k_clk->clk);

	return ret;
}

static void ac100_rtc_unregister_clks(struct ac100_rtc_dev *chip)
{
	of_clk_del_provider(chip->dev->of_node);
	clk_unregister_fixed_rate(chip->rtc_32k_clk->clk);
}

/**
 * RTC related bits
 */
static int ac100_rtc_get_time(struct device *dev, struct rtc_time *rtc_tm)
{
	struct ac100_rtc_dev *chip = dev_get_drvdata(dev);
	struct regmap *regmap = chip->regmap;
	u16 reg[7];
	int ret;

	ret = regmap_bulk_read(regmap, AC100_RTC_SEC, reg, 7);
	if (ret)
		return ret;

	rtc_tm->tm_sec  = bcd2bin(reg[0] & AC100_RTC_SEC_MASK);
	rtc_tm->tm_min  = bcd2bin(reg[1] & AC100_RTC_MIN_MASK);
	rtc_tm->tm_hour = bcd2bin(reg[2] & AC100_RTC_HOU_MASK);
	rtc_tm->tm_wday = bcd2bin(reg[3] & AC100_RTC_WEE_MASK);
	rtc_tm->tm_mday = bcd2bin(reg[4] & AC100_RTC_DAY_MASK);
	rtc_tm->tm_mon  = bcd2bin(reg[5] & AC100_RTC_MON_MASK) - 1;
	rtc_tm->tm_year = bcd2bin(reg[6] & AC100_RTC_YEA_MASK) +
			  AC100_YEAR_OFF;

	return rtc_valid_tm(rtc_tm);
}

static int ac100_rtc_set_time(struct device *dev, struct rtc_time *rtc_tm)
{
	struct ac100_rtc_dev *chip = dev_get_drvdata(dev);
	struct regmap *regmap = chip->regmap;
	int year;
	u16 reg[8];

	/* our RTC has a limited year range... */
	year = rtc_tm->tm_year - AC100_YEAR_OFF;
	if (year < 0 || year > (AC100_YEAR_MAX - 1900)) {
		dev_err(dev, "rtc only supports year in range %d - %d\n",
			AC100_YEAR_MIN, AC100_YEAR_MAX);
		return -EINVAL;
	}

	/* convert to BCD */
	reg[0] = bin2bcd(rtc_tm->tm_sec)     & AC100_RTC_SEC_MASK;
	reg[1] = bin2bcd(rtc_tm->tm_min)     & AC100_RTC_MIN_MASK;
	reg[2] = bin2bcd(rtc_tm->tm_hour)    & AC100_RTC_HOU_MASK;
	reg[3] = bin2bcd(rtc_tm->tm_wday)    & AC100_RTC_WEE_MASK;
	reg[4] = bin2bcd(rtc_tm->tm_mday)    & AC100_RTC_DAY_MASK;
	reg[5] = bin2bcd(rtc_tm->tm_mon + 1) & AC100_RTC_MON_MASK;
	reg[6] = bin2bcd(year)		     & AC100_RTC_YEA_MASK;
	/* trigger write */
	reg[7] = AC100_RTC_UPD_TRIGGER;

	/* Is it a leap year? */
	if (is_leap_year(year + AC100_YEAR_OFF + 1900))
		reg[6] |= AC100_RTC_YEA_LEAP;

	return regmap_bulk_write(regmap, AC100_RTC_SEC, reg, 8);
}

static int ac100_rtc_alarm_irq_enable(struct device *dev, unsigned int en)
{
	struct ac100_rtc_dev *chip = dev_get_drvdata(dev);
	struct regmap *regmap = chip->regmap;
	unsigned int val;

	val = en ? AC100_ALM_INT_ENABLE : 0;

	return regmap_write(regmap, AC100_ALM_INT_ENA, val);
}

static int ac100_rtc_get_alarm(struct device *dev, struct rtc_wkalrm *alrm)
{
	struct ac100_rtc_dev *chip = dev_get_drvdata(dev);
	struct regmap *regmap = chip->regmap;
	struct rtc_time *alrm_tm = &alrm->time;
	u16 reg[7];
	unsigned int val;
	int ret;

	ret = regmap_read(regmap, AC100_ALM_INT_ENA, &val);
	if (ret)
		return ret;

	alrm->enabled = !!(val & AC100_ALM_INT_ENABLE);

	ret = regmap_bulk_read(regmap, AC100_ALM_SEC, reg, 7);
	if (ret)
		return ret;

	alrm_tm->tm_sec  = bcd2bin(reg[0] & AC100_ALM_SEC_MASK);
	alrm_tm->tm_min  = bcd2bin(reg[1] & AC100_ALM_MIN_MASK);
	alrm_tm->tm_hour = bcd2bin(reg[2] & AC100_ALM_HOU_MASK);
	alrm_tm->tm_wday = bcd2bin(reg[3] & AC100_ALM_WEE_MASK);
	alrm_tm->tm_mday = bcd2bin(reg[4] & AC100_ALM_DAY_MASK);
	alrm_tm->tm_mon  = bcd2bin(reg[5] & AC100_ALM_MON_MASK) - 1;
	alrm_tm->tm_year = bcd2bin(reg[6] & AC100_ALM_YEA_MASK) +
			   AC100_YEAR_OFF;

	return 0;
}

static int ac100_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
{
	struct ac100_rtc_dev *chip = dev_get_drvdata(dev);
	struct regmap *regmap = chip->regmap;
	struct rtc_time *alrm_tm = &alrm->time;
	u16 reg[8];
	int year;
	int ret;

	/* our alarm has a limited year range... */
	year = alrm_tm->tm_year - AC100_YEAR_OFF;
	if (year < 0 || year > (AC100_YEAR_MAX - 1900)) {
		dev_err(dev, "alarm only supports year in range %d - %d\n",
			AC100_YEAR_MIN, AC100_YEAR_MAX);
		return -EINVAL;
	}

	/* convert to BCD */
	reg[0] = (bin2bcd(alrm_tm->tm_sec)  & AC100_ALM_SEC_MASK) |
			AC100_ALM_ENABLE_FLAG;
	reg[1] = (bin2bcd(alrm_tm->tm_min)  & AC100_ALM_MIN_MASK) |
			AC100_ALM_ENABLE_FLAG;
	reg[2] = (bin2bcd(alrm_tm->tm_hour) & AC100_ALM_HOU_MASK) |
			AC100_ALM_ENABLE_FLAG;
	/* Do not enable weekday alarm */
	reg[3] = bin2bcd(alrm_tm->tm_wday) & AC100_ALM_WEE_MASK;
	reg[4] = (bin2bcd(alrm_tm->tm_mday) & AC100_ALM_DAY_MASK) |
			AC100_ALM_ENABLE_FLAG;
	reg[5] = (bin2bcd(alrm_tm->tm_mon + 1)  & AC100_ALM_MON_MASK) |
			AC100_ALM_ENABLE_FLAG;
	reg[6] = (bin2bcd(year) & AC100_ALM_YEA_MASK) |
			AC100_ALM_ENABLE_FLAG;
	/* trigger write */
	reg[7] = AC100_ALM_UPD_TRIGGER;

	ret = regmap_bulk_write(regmap, AC100_ALM_SEC, reg, 8);
	if (ret)
		return ret;

	return ac100_rtc_alarm_irq_enable(dev, alrm->enabled);
}

static irqreturn_t ac100_rtc_irq(int irq, void *data)
{
	struct ac100_rtc_dev *chip = data;
	struct regmap *regmap = chip->regmap;
	unsigned int val = 0;
	int ret;

	mutex_lock(&chip->rtc->ops_lock);

	/* read status */
	ret = regmap_read(regmap, AC100_ALM_INT_STA, &val);
	if (ret)
		goto out;

	if (val & AC100_ALM_INT_ENABLE) {
		/* signal rtc framework */
		rtc_update_irq(chip->rtc, 1, RTC_AF | RTC_IRQF);

		/* clear status */
		ret = regmap_write(regmap, AC100_ALM_INT_STA, val);
		if (ret)
			goto out;

		/* disable interrupt */
		ret = ac100_rtc_alarm_irq_enable(chip->dev, 0);
		if (ret)
			goto out;
	}

out:
	mutex_unlock(&chip->rtc->ops_lock);
	return IRQ_HANDLED;
}

static const struct rtc_class_ops ac100_rtc_ops = {
	.read_time	  = ac100_rtc_get_time,
	.set_time	  = ac100_rtc_set_time,
	.read_alarm	  = ac100_rtc_get_alarm,
	.set_alarm	  = ac100_rtc_set_alarm,
	.alarm_irq_enable = ac100_rtc_alarm_irq_enable,
};

static int ac100_rtc_probe(struct platform_device *pdev)
{
	struct ac100_dev *ac100 = dev_get_drvdata(pdev->dev.parent);
	struct ac100_rtc_dev *chip;
	int ret;

	chip = devm_kzalloc(&pdev->dev, sizeof(*chip), GFP_KERNEL);
	if (!chip)
		return -ENOMEM;

	platform_set_drvdata(pdev, chip);
	chip->dev = &pdev->dev;
	chip->regmap = ac100->regmap;

	chip->irq = platform_get_irq(pdev, 0);
	if (chip->irq < 0) {
		dev_err(&pdev->dev, "No IRQ resource\n");
		return chip->irq;
	}

	chip->rtc = devm_rtc_allocate_device(&pdev->dev);
	if (IS_ERR(chip->rtc))
		return PTR_ERR(chip->rtc);

	chip->rtc->ops = &ac100_rtc_ops;

	ret = devm_request_threaded_irq(&pdev->dev, chip->irq, NULL,
					ac100_rtc_irq,
					IRQF_SHARED | IRQF_ONESHOT,
					dev_name(&pdev->dev), chip);
	if (ret) {
		dev_err(&pdev->dev, "Could not request IRQ\n");
		return ret;
	}

	/* always use 24 hour mode */
	regmap_write_bits(chip->regmap, AC100_RTC_CTRL, AC100_RTC_CTRL_24HOUR,
			  AC100_RTC_CTRL_24HOUR);

	/* disable counter alarm interrupt */
	regmap_write(chip->regmap, AC100_ALM_INT_ENA, 0);

	/* clear counter alarm pending interrupts */
	regmap_write(chip->regmap, AC100_ALM_INT_STA, AC100_ALM_INT_ENABLE);

	ret = ac100_rtc_register_clks(chip);
	if (ret)
		return ret;

	ret = rtc_register_device(chip->rtc);
	if (ret) {
		dev_err(&pdev->dev, "unable to register device\n");
		return ret;
	}

	dev_info(&pdev->dev, "RTC enabled\n");

	return 0;
}

static int ac100_rtc_remove(struct platform_device *pdev)
{
	struct ac100_rtc_dev *chip = platform_get_drvdata(pdev);

	ac100_rtc_unregister_clks(chip);

	return 0;
}

static const struct of_device_id ac100_rtc_match[] = {
	{ .compatible = "x-powers,ac100-rtc" },
	{ },
};
MODULE_DEVICE_TABLE(of, ac100_rtc_match);

static struct platform_driver ac100_rtc_driver = {
	.probe		= ac100_rtc_probe,
	.remove		= ac100_rtc_remove,
	.driver		= {
		.name		= "ac100-rtc",
		.of_match_table	= of_match_ptr(ac100_rtc_match),
	},
};
module_platform_driver(ac100_rtc_driver);

MODULE_DESCRIPTION("X-Powers AC100 RTC driver");
MODULE_AUTHOR("Chen-Yu Tsai <wens@csie.org>");
MODULE_LICENSE("GPL v2");

Privacy Policy