aboutsummaryrefslogtreecommitdiffstats
path: root/fs/xfs/xfs_log_recover.c
blob: 87886b7f77dad0aeb51b7cdea4638c05319b612b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
// SPDX-License-Identifier: GPL-2.0
/*
 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
 * All Rights Reserved.
 */
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_shared.h"
#include "xfs_format.h"
#include "xfs_log_format.h"
#include "xfs_trans_resv.h"
#include "xfs_bit.h"
#include "xfs_sb.h"
#include "xfs_mount.h"
#include "xfs_defer.h"
#include "xfs_inode.h"
#include "xfs_trans.h"
#include "xfs_log.h"
#include "xfs_log_priv.h"
#include "xfs_log_recover.h"
#include "xfs_trans_priv.h"
#include "xfs_alloc.h"
#include "xfs_ialloc.h"
#include "xfs_trace.h"
#include "xfs_icache.h"
#include "xfs_error.h"
#include "xfs_buf_item.h"

#define BLK_AVG(blk1, blk2)	((blk1+blk2) >> 1)

STATIC int
xlog_find_zeroed(
	struct xlog	*,
	xfs_daddr_t	*);
STATIC int
xlog_clear_stale_blocks(
	struct xlog	*,
	xfs_lsn_t);
#if defined(DEBUG)
STATIC void
xlog_recover_check_summary(
	struct xlog *);
#else
#define	xlog_recover_check_summary(log)
#endif
STATIC int
xlog_do_recovery_pass(
        struct xlog *, xfs_daddr_t, xfs_daddr_t, int, xfs_daddr_t *);

/*
 * Sector aligned buffer routines for buffer create/read/write/access
 */

/*
 * Verify the log-relative block number and length in basic blocks are valid for
 * an operation involving the given XFS log buffer. Returns true if the fields
 * are valid, false otherwise.
 */
static inline bool
xlog_verify_bno(
	struct xlog	*log,
	xfs_daddr_t	blk_no,
	int		bbcount)
{
	if (blk_no < 0 || blk_no >= log->l_logBBsize)
		return false;
	if (bbcount <= 0 || (blk_no + bbcount) > log->l_logBBsize)
		return false;
	return true;
}

/*
 * Allocate a buffer to hold log data.  The buffer needs to be able to map to
 * a range of nbblks basic blocks at any valid offset within the log.
 */
static char *
xlog_alloc_buffer(
	struct xlog	*log,
	int		nbblks)
{
	int align_mask = xfs_buftarg_dma_alignment(log->l_targ);

	/*
	 * Pass log block 0 since we don't have an addr yet, buffer will be
	 * verified on read.
	 */
	if (XFS_IS_CORRUPT(log->l_mp, !xlog_verify_bno(log, 0, nbblks))) {
		xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
			nbblks);
		return NULL;
	}

	/*
	 * We do log I/O in units of log sectors (a power-of-2 multiple of the
	 * basic block size), so we round up the requested size to accommodate
	 * the basic blocks required for complete log sectors.
	 *
	 * In addition, the buffer may be used for a non-sector-aligned block
	 * offset, in which case an I/O of the requested size could extend
	 * beyond the end of the buffer.  If the requested size is only 1 basic
	 * block it will never straddle a sector boundary, so this won't be an
	 * issue.  Nor will this be a problem if the log I/O is done in basic
	 * blocks (sector size 1).  But otherwise we extend the buffer by one
	 * extra log sector to ensure there's space to accommodate this
	 * possibility.
	 */
	if (nbblks > 1 && log->l_sectBBsize > 1)
		nbblks += log->l_sectBBsize;
	nbblks = round_up(nbblks, log->l_sectBBsize);
	return kmem_alloc_io(BBTOB(nbblks), align_mask, KM_MAYFAIL | KM_ZERO);
}

/*
 * Return the address of the start of the given block number's data
 * in a log buffer.  The buffer covers a log sector-aligned region.
 */
static inline unsigned int
xlog_align(
	struct xlog	*log,
	xfs_daddr_t	blk_no)
{
	return BBTOB(blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1));
}

static int
xlog_do_io(
	struct xlog		*log,
	xfs_daddr_t		blk_no,
	unsigned int		nbblks,
	char			*data,
	unsigned int		op)
{
	int			error;

	if (XFS_IS_CORRUPT(log->l_mp, !xlog_verify_bno(log, blk_no, nbblks))) {
		xfs_warn(log->l_mp,
			 "Invalid log block/length (0x%llx, 0x%x) for buffer",
			 blk_no, nbblks);
		return -EFSCORRUPTED;
	}

	blk_no = round_down(blk_no, log->l_sectBBsize);
	nbblks = round_up(nbblks, log->l_sectBBsize);
	ASSERT(nbblks > 0);

	error = xfs_rw_bdev(log->l_targ->bt_bdev, log->l_logBBstart + blk_no,
			BBTOB(nbblks), data, op);
	if (error && !XFS_FORCED_SHUTDOWN(log->l_mp)) {
		xfs_alert(log->l_mp,
			  "log recovery %s I/O error at daddr 0x%llx len %d error %d",
			  op == REQ_OP_WRITE ? "write" : "read",
			  blk_no, nbblks, error);
	}
	return error;
}

STATIC int
xlog_bread_noalign(
	struct xlog	*log,
	xfs_daddr_t	blk_no,
	int		nbblks,
	char		*data)
{
	return xlog_do_io(log, blk_no, nbblks, data, REQ_OP_READ);
}

STATIC int
xlog_bread(
	struct xlog	*log,
	xfs_daddr_t	blk_no,
	int		nbblks,
	char		*data,
	char		**offset)
{
	int		error;

	error = xlog_do_io(log, blk_no, nbblks, data, REQ_OP_READ);
	if (!error)
		*offset = data + xlog_align(log, blk_no);
	return error;
}

STATIC int
xlog_bwrite(
	struct xlog	*log,
	xfs_daddr_t	blk_no,
	int		nbblks,
	char		*data)
{
	return xlog_do_io(log, blk_no, nbblks, data, REQ_OP_WRITE);
}

#ifdef DEBUG
/*
 * dump debug superblock and log record information
 */
STATIC void
xlog_header_check_dump(
	xfs_mount_t		*mp,
	xlog_rec_header_t	*head)
{
	xfs_debug(mp, "%s:  SB : uuid = %pU, fmt = %d",
		__func__, &mp->m_sb.sb_uuid, XLOG_FMT);
	xfs_debug(mp, "    log : uuid = %pU, fmt = %d",
		&head->h_fs_uuid, be32_to_cpu(head->h_fmt));
}
#else
#define xlog_header_check_dump(mp, head)
#endif

/*
 * check log record header for recovery
 */
STATIC int
xlog_header_check_recover(
	xfs_mount_t		*mp,
	xlog_rec_header_t	*head)
{
	ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));

	/*
	 * IRIX doesn't write the h_fmt field and leaves it zeroed
	 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
	 * a dirty log created in IRIX.
	 */
	if (XFS_IS_CORRUPT(mp, head->h_fmt != cpu_to_be32(XLOG_FMT))) {
		xfs_warn(mp,
	"dirty log written in incompatible format - can't recover");
		xlog_header_check_dump(mp, head);
		return -EFSCORRUPTED;
	}
	if (XFS_IS_CORRUPT(mp, !uuid_equal(&mp->m_sb.sb_uuid,
					   &head->h_fs_uuid))) {
		xfs_warn(mp,
	"dirty log entry has mismatched uuid - can't recover");
		xlog_header_check_dump(mp, head);
		return -EFSCORRUPTED;
	}
	return 0;
}

/*
 * read the head block of the log and check the header
 */
STATIC int
xlog_header_check_mount(
	xfs_mount_t		*mp,
	xlog_rec_header_t	*head)
{
	ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));

	if (uuid_is_null(&head->h_fs_uuid)) {
		/*
		 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
		 * h_fs_uuid is null, we assume this log was last mounted
		 * by IRIX and continue.
		 */
		xfs_warn(mp, "null uuid in log - IRIX style log");
	} else if (XFS_IS_CORRUPT(mp, !uuid_equal(&mp->m_sb.sb_uuid,
						  &head->h_fs_uuid))) {
		xfs_warn(mp, "log has mismatched uuid - can't recover");
		xlog_header_check_dump(mp, head);
		return -EFSCORRUPTED;
	}
	return 0;
}

/*
 * This routine finds (to an approximation) the first block in the physical
 * log which contains the given cycle.  It uses a binary search algorithm.
 * Note that the algorithm can not be perfect because the disk will not
 * necessarily be perfect.
 */
STATIC int
xlog_find_cycle_start(
	struct xlog	*log,
	char		*buffer,
	xfs_daddr_t	first_blk,
	xfs_daddr_t	*last_blk,
	uint		cycle)
{
	char		*offset;
	xfs_daddr_t	mid_blk;
	xfs_daddr_t	end_blk;
	uint		mid_cycle;
	int		error;

	end_blk = *last_blk;
	mid_blk = BLK_AVG(first_blk, end_blk);
	while (mid_blk != first_blk && mid_blk != end_blk) {
		error = xlog_bread(log, mid_blk, 1, buffer, &offset);
		if (error)
			return error;
		mid_cycle = xlog_get_cycle(offset);
		if (mid_cycle == cycle)
			end_blk = mid_blk;   /* last_half_cycle == mid_cycle */
		else
			first_blk = mid_blk; /* first_half_cycle == mid_cycle */
		mid_blk = BLK_AVG(first_blk, end_blk);
	}
	ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
	       (mid_blk == end_blk && mid_blk-1 == first_blk));

	*last_blk = end_blk;

	return 0;
}

/*
 * Check that a range of blocks does not contain stop_on_cycle_no.
 * Fill in *new_blk with the block offset where such a block is
 * found, or with -1 (an invalid block number) if there is no such
 * block in the range.  The scan needs to occur from front to back
 * and the pointer into the region must be updated since a later
 * routine will need to perform another test.
 */
STATIC int
xlog_find_verify_cycle(
	struct xlog	*log,
	xfs_daddr_t	start_blk,
	int		nbblks,
	uint		stop_on_cycle_no,
	xfs_daddr_t	*new_blk)
{
	xfs_daddr_t	i, j;
	uint		cycle;
	char		*buffer;
	xfs_daddr_t	bufblks;
	char		*buf = NULL;
	int		error = 0;

	/*
	 * Greedily allocate a buffer big enough to handle the full
	 * range of basic blocks we'll be examining.  If that fails,
	 * try a smaller size.  We need to be able to read at least
	 * a log sector, or we're out of luck.
	 */
	bufblks = 1 << ffs(nbblks);
	while (bufblks > log->l_logBBsize)
		bufblks >>= 1;
	while (!(buffer = xlog_alloc_buffer(log, bufblks))) {
		bufblks >>= 1;
		if (bufblks < log->l_sectBBsize)
			return -ENOMEM;
	}

	for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
		int	bcount;

		bcount = min(bufblks, (start_blk + nbblks - i));

		error = xlog_bread(log, i, bcount, buffer, &buf);
		if (error)
			goto out;

		for (j = 0; j < bcount; j++) {
			cycle = xlog_get_cycle(buf);
			if (cycle == stop_on_cycle_no) {
				*new_blk = i+j;
				goto out;
			}

			buf += BBSIZE;
		}
	}

	*new_blk = -1;

out:
	kmem_free(buffer);
	return error;
}

static inline int
xlog_logrec_hblks(struct xlog *log, struct xlog_rec_header *rh)
{
	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
		int	h_size = be32_to_cpu(rh->h_size);

		if ((be32_to_cpu(rh->h_version) & XLOG_VERSION_2) &&
		    h_size > XLOG_HEADER_CYCLE_SIZE)
			return DIV_ROUND_UP(h_size, XLOG_HEADER_CYCLE_SIZE);
	}
	return 1;
}

/*
 * Potentially backup over partial log record write.
 *
 * In the typical case, last_blk is the number of the block directly after
 * a good log record.  Therefore, we subtract one to get the block number
 * of the last block in the given buffer.  extra_bblks contains the number
 * of blocks we would have read on a previous read.  This happens when the
 * last log record is split over the end of the physical log.
 *
 * extra_bblks is the number of blocks potentially verified on a previous
 * call to this routine.
 */
STATIC int
xlog_find_verify_log_record(
	struct xlog		*log,
	xfs_daddr_t		start_blk,
	xfs_daddr_t		*last_blk,
	int			extra_bblks)
{
	xfs_daddr_t		i;
	char			*buffer;
	char			*offset = NULL;
	xlog_rec_header_t	*head = NULL;
	int			error = 0;
	int			smallmem = 0;
	int			num_blks = *last_blk - start_blk;
	int			xhdrs;

	ASSERT(start_blk != 0 || *last_blk != start_blk);

	buffer = xlog_alloc_buffer(log, num_blks);
	if (!buffer) {
		buffer = xlog_alloc_buffer(log, 1);
		if (!buffer)
			return -ENOMEM;
		smallmem = 1;
	} else {
		error = xlog_bread(log, start_blk, num_blks, buffer, &offset);
		if (error)
			goto out;
		offset += ((num_blks - 1) << BBSHIFT);
	}

	for (i = (*last_blk) - 1; i >= 0; i--) {
		if (i < start_blk) {
			/* valid log record not found */
			xfs_warn(log->l_mp,
		"Log inconsistent (didn't find previous header)");
			ASSERT(0);
			error = -EFSCORRUPTED;
			goto out;
		}

		if (smallmem) {
			error = xlog_bread(log, i, 1, buffer, &offset);
			if (error)
				goto out;
		}

		head = (xlog_rec_header_t *)offset;

		if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
			break;

		if (!smallmem)
			offset -= BBSIZE;
	}

	/*
	 * We hit the beginning of the physical log & still no header.  Return
	 * to caller.  If caller can handle a return of -1, then this routine
	 * will be called again for the end of the physical log.
	 */
	if (i == -1) {
		error = 1;
		goto out;
	}

	/*
	 * We have the final block of the good log (the first block
	 * of the log record _before_ the head. So we check the uuid.
	 */
	if ((error = xlog_header_check_mount(log->l_mp, head)))
		goto out;

	/*
	 * We may have found a log record header before we expected one.
	 * last_blk will be the 1st block # with a given cycle #.  We may end
	 * up reading an entire log record.  In this case, we don't want to
	 * reset last_blk.  Only when last_blk points in the middle of a log
	 * record do we update last_blk.
	 */
	xhdrs = xlog_logrec_hblks(log, head);

	if (*last_blk - i + extra_bblks !=
	    BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
		*last_blk = i;

out:
	kmem_free(buffer);
	return error;
}

/*
 * Head is defined to be the point of the log where the next log write
 * could go.  This means that incomplete LR writes at the end are
 * eliminated when calculating the head.  We aren't guaranteed that previous
 * LR have complete transactions.  We only know that a cycle number of
 * current cycle number -1 won't be present in the log if we start writing
 * from our current block number.
 *
 * last_blk contains the block number of the first block with a given
 * cycle number.
 *
 * Return: zero if normal, non-zero if error.
 */
STATIC int
xlog_find_head(
	struct xlog	*log,
	xfs_daddr_t	*return_head_blk)
{
	char		*buffer;
	char		*offset;
	xfs_daddr_t	new_blk, first_blk, start_blk, last_blk, head_blk;
	int		num_scan_bblks;
	uint		first_half_cycle, last_half_cycle;
	uint		stop_on_cycle;
	int		error, log_bbnum = log->l_logBBsize;

	/* Is the end of the log device zeroed? */
	error = xlog_find_zeroed(log, &first_blk);
	if (error < 0) {
		xfs_warn(log->l_mp, "empty log check failed");
		return error;
	}
	if (error == 1) {
		*return_head_blk = first_blk;

		/* Is the whole lot zeroed? */
		if (!first_blk) {
			/* Linux XFS shouldn't generate totally zeroed logs -
			 * mkfs etc write a dummy unmount record to a fresh
			 * log so we can store the uuid in there
			 */
			xfs_warn(log->l_mp, "totally zeroed log");
		}

		return 0;
	}

	first_blk = 0;			/* get cycle # of 1st block */
	buffer = xlog_alloc_buffer(log, 1);
	if (!buffer)
		return -ENOMEM;

	error = xlog_bread(log, 0, 1, buffer, &offset);
	if (error)
		goto out_free_buffer;

	first_half_cycle = xlog_get_cycle(offset);

	last_blk = head_blk = log_bbnum - 1;	/* get cycle # of last block */
	error = xlog_bread(log, last_blk, 1, buffer, &offset);
	if (error)
		goto out_free_buffer;

	last_half_cycle = xlog_get_cycle(offset);
	ASSERT(last_half_cycle != 0);

	/*
	 * If the 1st half cycle number is equal to the last half cycle number,
	 * then the entire log is stamped with the same cycle number.  In this
	 * case, head_blk can't be set to zero (which makes sense).  The below
	 * math doesn't work out properly with head_blk equal to zero.  Instead,
	 * we set it to log_bbnum which is an invalid block number, but this
	 * value makes the math correct.  If head_blk doesn't changed through
	 * all the tests below, *head_blk is set to zero at the very end rather
	 * than log_bbnum.  In a sense, log_bbnum and zero are the same block
	 * in a circular file.
	 */
	if (first_half_cycle == last_half_cycle) {
		/*
		 * In this case we believe that the entire log should have
		 * cycle number last_half_cycle.  We need to scan backwards
		 * from the end verifying that there are no holes still
		 * containing last_half_cycle - 1.  If we find such a hole,
		 * then the start of that hole will be the new head.  The
		 * simple case looks like
		 *        x | x ... | x - 1 | x
		 * Another case that fits this picture would be
		 *        x | x + 1 | x ... | x
		 * In this case the head really is somewhere at the end of the
		 * log, as one of the latest writes at the beginning was
		 * incomplete.
		 * One more case is
		 *        x | x + 1 | x ... | x - 1 | x
		 * This is really the combination of the above two cases, and
		 * the head has to end up at the start of the x-1 hole at the
		 * end of the log.
		 *
		 * In the 256k log case, we will read from the beginning to the
		 * end of the log and search for cycle numbers equal to x-1.
		 * We don't worry about the x+1 blocks that we encounter,
		 * because we know that they cannot be the head since the log
		 * started with x.
		 */
		head_blk = log_bbnum;
		stop_on_cycle = last_half_cycle - 1;
	} else {
		/*
		 * In this case we want to find the first block with cycle
		 * number matching last_half_cycle.  We expect the log to be
		 * some variation on
		 *        x + 1 ... | x ... | x
		 * The first block with cycle number x (last_half_cycle) will
		 * be where the new head belongs.  First we do a binary search
		 * for the first occurrence of last_half_cycle.  The binary
		 * search may not be totally accurate, so then we scan back
		 * from there looking for occurrences of last_half_cycle before
		 * us.  If that backwards scan wraps around the beginning of
		 * the log, then we look for occurrences of last_half_cycle - 1
		 * at the end of the log.  The cases we're looking for look
		 * like
		 *                               v binary search stopped here
		 *        x + 1 ... | x | x + 1 | x ... | x
		 *                   ^ but we want to locate this spot
		 * or
		 *        <---------> less than scan distance
		 *        x + 1 ... | x ... | x - 1 | x
		 *                           ^ we want to locate this spot
		 */
		stop_on_cycle = last_half_cycle;
		error = xlog_find_cycle_start(log, buffer, first_blk, &head_blk,
				last_half_cycle);
		if (error)
			goto out_free_buffer;
	}

	/*
	 * Now validate the answer.  Scan back some number of maximum possible
	 * blocks and make sure each one has the expected cycle number.  The
	 * maximum is determined by the total possible amount of buffering
	 * in the in-core log.  The following number can be made tighter if
	 * we actually look at the block size of the filesystem.
	 */
	num_scan_bblks = min_t(int, log_bbnum, XLOG_TOTAL_REC_SHIFT(log));
	if (head_blk >= num_scan_bblks) {
		/*
		 * We are guaranteed that the entire check can be performed
		 * in one buffer.
		 */
		start_blk = head_blk - num_scan_bblks;
		if ((error = xlog_find_verify_cycle(log,
						start_blk, num_scan_bblks,
						stop_on_cycle, &new_blk)))
			goto out_free_buffer;
		if (new_blk != -1)
			head_blk = new_blk;
	} else {		/* need to read 2 parts of log */
		/*
		 * We are going to scan backwards in the log in two parts.
		 * First we scan the physical end of the log.  In this part
		 * of the log, we are looking for blocks with cycle number
		 * last_half_cycle - 1.
		 * If we find one, then we know that the log starts there, as
		 * we've found a hole that didn't get written in going around
		 * the end of the physical log.  The simple case for this is
		 *        x + 1 ... | x ... | x - 1 | x
		 *        <---------> less than scan distance
		 * If all of the blocks at the end of the log have cycle number
		 * last_half_cycle, then we check the blocks at the start of
		 * the log looking for occurrences of last_half_cycle.  If we
		 * find one, then our current estimate for the location of the
		 * first occurrence of last_half_cycle is wrong and we move
		 * back to the hole we've found.  This case looks like
		 *        x + 1 ... | x | x + 1 | x ...
		 *                               ^ binary search stopped here
		 * Another case we need to handle that only occurs in 256k
		 * logs is
		 *        x + 1 ... | x ... | x+1 | x ...
		 *                   ^ binary search stops here
		 * In a 256k log, the scan at the end of the log will see the
		 * x + 1 blocks.  We need to skip past those since that is
		 * certainly not the head of the log.  By searching for
		 * last_half_cycle-1 we accomplish that.
		 */
		ASSERT(head_blk <= INT_MAX &&
			(xfs_daddr_t) num_scan_bblks >= head_blk);
		start_blk = log_bbnum - (num_scan_bblks - head_blk);
		if ((error = xlog_find_verify_cycle(log, start_blk,
					num_scan_bblks - (int)head_blk,
					(stop_on_cycle - 1), &new_blk)))
			goto out_free_buffer;
		if (new_blk != -1) {
			head_blk = new_blk;
			goto validate_head;
		}

		/*
		 * Scan beginning of log now.  The last part of the physical
		 * log is good.  This scan needs to verify that it doesn't find
		 * the last_half_cycle.
		 */
		start_blk = 0;
		ASSERT(head_blk <= INT_MAX);
		if ((error = xlog_find_verify_cycle(log,
					start_blk, (int)head_blk,
					stop_on_cycle, &new_blk)))
			goto out_free_buffer;
		if (new_blk != -1)
			head_blk = new_blk;
	}

validate_head:
	/*
	 * Now we need to make sure head_blk is not pointing to a block in
	 * the middle of a log record.
	 */
	num_scan_bblks = XLOG_REC_SHIFT(log);
	if (head_blk >= num_scan_bblks) {
		start_blk = head_blk - num_scan_bblks; /* don't read head_blk */

		/* start ptr at last block ptr before head_blk */
		error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0);
		if (error == 1)
			error = -EIO;
		if (error)
			goto out_free_buffer;
	} else {
		start_blk = 0;
		ASSERT(head_blk <= INT_MAX);
		error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0);
		if (error < 0)
			goto out_free_buffer;
		if (error == 1) {
			/* We hit the beginning of the log during our search */
			start_blk = log_bbnum - (num_scan_bblks - head_blk);
			new_blk = log_bbnum;
			ASSERT(start_blk <= INT_MAX &&
				(xfs_daddr_t) log_bbnum-start_blk >= 0);
			ASSERT(head_blk <= INT_MAX);
			error = xlog_find_verify_log_record(log, start_blk,
							&new_blk, (int)head_blk);
			if (error == 1)
				error = -EIO;
			if (error)
				goto out_free_buffer;
			if (new_blk != log_bbnum)
				head_blk = new_blk;
		} else if (error)
			goto out_free_buffer;
	}

	kmem_free(buffer);
	if (head_blk == log_bbnum)
		*return_head_blk = 0;
	else
		*return_head_blk = head_blk;
	/*
	 * When returning here, we have a good block number.  Bad block
	 * means that during a previous crash, we didn't have a clean break
	 * from cycle number N to cycle number N-1.  In this case, we need
	 * to find the first block with cycle number N-1.
	 */
	return 0;

out_free_buffer:
	kmem_free(buffer);
	if (error)
		xfs_warn(log->l_mp, "failed to find log head");
	return error;
}

/*
 * Seek backwards in the log for log record headers.
 *
 * Given a starting log block, walk backwards until we find the provided number
 * of records or hit the provided tail block. The return value is the number of
 * records encountered or a negative error code. The log block and buffer
 * pointer of the last record seen are returned in rblk and rhead respectively.
 */
STATIC int
xlog_rseek_logrec_hdr(
	struct xlog		*log,
	xfs_daddr_t		head_blk,
	xfs_daddr_t		tail_blk,
	int			count,
	char			*buffer,
	xfs_daddr_t		*rblk,
	struct xlog_rec_header	**rhead,
	bool			*wrapped)
{
	int			i;
	int			error;
	int			found = 0;
	char			*offset = NULL;
	xfs_daddr_t		end_blk;

	*wrapped = false;

	/*
	 * Walk backwards from the head block until we hit the tail or the first
	 * block in the log.
	 */
	end_blk = head_blk > tail_blk ? tail_blk : 0;
	for (i = (int) head_blk - 1; i >= end_blk; i--) {
		error = xlog_bread(log, i, 1, buffer, &offset);
		if (error)
			goto out_error;

		if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
			*rblk = i;
			*rhead = (struct xlog_rec_header *) offset;
			if (++found == count)
				break;
		}
	}

	/*
	 * If we haven't hit the tail block or the log record header count,
	 * start looking again from the end of the physical log. Note that
	 * callers can pass head == tail if the tail is not yet known.
	 */
	if (tail_blk >= head_blk && found != count) {
		for (i = log->l_logBBsize - 1; i >= (int) tail_blk; i--) {
			error = xlog_bread(log, i, 1, buffer, &offset);
			if (error)
				goto out_error;

			if (*(__be32 *)offset ==
			    cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
				*wrapped = true;
				*rblk = i;
				*rhead = (struct xlog_rec_header *) offset;
				if (++found == count)
					break;
			}
		}
	}

	return found;

out_error:
	return error;
}

/*
 * Seek forward in the log for log record headers.
 *
 * Given head and tail blocks, walk forward from the tail block until we find
 * the provided number of records or hit the head block. The return value is the
 * number of records encountered or a negative error code. The log block and
 * buffer pointer of the last record seen are returned in rblk and rhead
 * respectively.
 */
STATIC int
xlog_seek_logrec_hdr(
	struct xlog		*log,
	xfs_daddr_t		head_blk,
	xfs_daddr_t		tail_blk,
	int			count,
	char			*buffer,
	xfs_daddr_t		*rblk,
	struct xlog_rec_header	**rhead,
	bool			*wrapped)
{
	int			i;
	int			error;
	int			found = 0;
	char			*offset = NULL;
	xfs_daddr_t		end_blk;

	*wrapped = false;

	/*
	 * Walk forward from the tail block until we hit the head or the last
	 * block in the log.
	 */
	end_blk = head_blk > tail_blk ? head_blk : log->l_logBBsize - 1;
	for (i = (int) tail_blk; i <= end_blk; i++) {
		error = xlog_bread(log, i, 1, buffer, &offset);
		if (error)
			goto out_error;

		if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
			*rblk = i;
			*rhead = (struct xlog_rec_header *) offset;
			if (++found == count)
				break;
		}
	}

	/*
	 * If we haven't hit the head block or the log record header count,
	 * start looking again from the start of the physical log.
	 */
	if (tail_blk > head_blk && found != count) {
		for (i = 0; i < (int) head_blk; i++) {
			error = xlog_bread(log, i, 1, buffer, &offset);
			if (error)
				goto out_error;

			if (*(__be32 *)offset ==
			    cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
				*wrapped = true;
				*rblk = i;
				*rhead = (struct xlog_rec_header *) offset;
				if (++found == count)
					break;
			}
		}
	}

	return found;

out_error:
	return error;
}

/*
 * Calculate distance from head to tail (i.e., unused space in the log).
 */
static inline int
xlog_tail_distance(
	struct xlog	*log,
	xfs_daddr_t	head_blk,
	xfs_daddr_t	tail_blk)
{
	if (head_blk < tail_blk)
		return tail_blk - head_blk;

	return tail_blk + (log->l_logBBsize - head_blk);
}

/*
 * Verify the log tail. This is particularly important when torn or incomplete
 * writes have been detected near the front of the log and the head has been
 * walked back accordingly.
 *
 * We also have to handle the case where the tail was pinned and the head
 * blocked behind the tail right before a crash. If the tail had been pushed
 * immediately prior to the crash and the subsequent checkpoint was only
 * partially written, it's possible it overwrote the last referenced tail in the
 * log with garbage. This is not a coherency problem because the tail must have
 * been pushed before it can be overwritten, but appears as log corruption to
 * recovery because we have no way to know the tail was updated if the
 * subsequent checkpoint didn't write successfully.
 *
 * Therefore, CRC check the log from tail to head. If a failure occurs and the
 * offending record is within max iclog bufs from the head, walk the tail
 * forward and retry until a valid tail is found or corruption is detected out
 * of the range of a possible overwrite.
 */
STATIC int
xlog_verify_tail(
	struct xlog		*log,
	xfs_daddr_t		head_blk,
	xfs_daddr_t		*tail_blk,
	int			hsize)
{
	struct xlog_rec_header	*thead;
	char			*buffer;
	xfs_daddr_t		first_bad;
	int			error = 0;
	bool			wrapped;
	xfs_daddr_t		tmp_tail;
	xfs_daddr_t		orig_tail = *tail_blk;

	buffer = xlog_alloc_buffer(log, 1);
	if (!buffer)
		return -ENOMEM;

	/*
	 * Make sure the tail points to a record (returns positive count on
	 * success).
	 */
	error = xlog_seek_logrec_hdr(log, head_blk, *tail_blk, 1, buffer,
			&tmp_tail, &thead, &wrapped);
	if (error < 0)
		goto out;
	if (*tail_blk != tmp_tail)
		*tail_blk = tmp_tail;

	/*
	 * Run a CRC check from the tail to the head. We can't just check
	 * MAX_ICLOGS records past the tail because the tail may point to stale
	 * blocks cleared during the search for the head/tail. These blocks are
	 * overwritten with zero-length records and thus record count is not a
	 * reliable indicator of the iclog state before a crash.
	 */
	first_bad = 0;
	error = xlog_do_recovery_pass(log, head_blk, *tail_blk,
				      XLOG_RECOVER_CRCPASS, &first_bad);
	while ((error == -EFSBADCRC || error == -EFSCORRUPTED) && first_bad) {
		int	tail_distance;

		/*
		 * Is corruption within range of the head? If so, retry from
		 * the next record. Otherwise return an error.
		 */
		tail_distance = xlog_tail_distance(log, head_blk, first_bad);
		if (tail_distance > BTOBB(XLOG_MAX_ICLOGS * hsize))
			break;

		/* skip to the next record; returns positive count on success */
		error = xlog_seek_logrec_hdr(log, head_blk, first_bad, 2,
				buffer, &tmp_tail, &thead, &wrapped);
		if (error < 0)
			goto out;

		*tail_blk = tmp_tail;
		first_bad = 0;
		error = xlog_do_recovery_pass(log, head_blk, *tail_blk,
					      XLOG_RECOVER_CRCPASS, &first_bad);
	}

	if (!error && *tail_blk != orig_tail)
		xfs_warn(log->l_mp,
		"Tail block (0x%llx) overwrite detected. Updated to 0x%llx",
			 orig_tail, *tail_blk);
out:
	kmem_free(buffer);
	return error;
}

/*
 * Detect and trim torn writes from the head of the log.
 *
 * Storage without sector atomicity guarantees can result in torn writes in the
 * log in the event of a crash. Our only means to detect this scenario is via
 * CRC verification. While we can't always be certain that CRC verification
 * failure is due to a torn write vs. an unrelated corruption, we do know that
 * only a certain number (XLOG_MAX_ICLOGS) of log records can be written out at
 * one time. Therefore, CRC verify up to XLOG_MAX_ICLOGS records at the head of
 * the log and treat failures in this range as torn writes as a matter of
 * policy. In the event of CRC failure, the head is walked back to the last good
 * record in the log and the tail is updated from that record and verified.
 */
STATIC int
xlog_verify_head(
	struct xlog		*log,
	xfs_daddr_t		*head_blk,	/* in/out: unverified head */
	xfs_daddr_t		*tail_blk,	/* out: tail block */
	char			*buffer,
	xfs_daddr_t		*rhead_blk,	/* start blk of last record */
	struct xlog_rec_header	**rhead,	/* ptr to last record */
	bool			*wrapped)	/* last rec. wraps phys. log */
{
	struct xlog_rec_header	*tmp_rhead;
	char			*tmp_buffer;
	xfs_daddr_t		first_bad;
	xfs_daddr_t		tmp_rhead_blk;
	int			found;
	int			error;
	bool			tmp_wrapped;

	/*
	 * Check the head of the log for torn writes. Search backwards from the
	 * head until we hit the tail or the maximum number of log record I/Os
	 * that could have been in flight at one time. Use a temporary buffer so
	 * we don't trash the rhead/buffer pointers from the caller.
	 */
	tmp_buffer = xlog_alloc_buffer(log, 1);
	if (!tmp_buffer)
		return -ENOMEM;
	error = xlog_rseek_logrec_hdr(log, *head_blk, *tail_blk,
				      XLOG_MAX_ICLOGS, tmp_buffer,
				      &tmp_rhead_blk, &tmp_rhead, &tmp_wrapped);
	kmem_free(tmp_buffer);
	if (error < 0)
		return error;

	/*
	 * Now run a CRC verification pass over the records starting at the
	 * block found above to the current head. If a CRC failure occurs, the
	 * log block of the first bad record is saved in first_bad.
	 */
	error = xlog_do_recovery_pass(log, *head_blk, tmp_rhead_blk,
				      XLOG_RECOVER_CRCPASS, &first_bad);
	if ((error == -EFSBADCRC || error == -EFSCORRUPTED) && first_bad) {
		/*
		 * We've hit a potential torn write. Reset the error and warn
		 * about it.
		 */
		error = 0;
		xfs_warn(log->l_mp,
"Torn write (CRC failure) detected at log block 0x%llx. Truncating head block from 0x%llx.",
			 first_bad, *head_blk);

		/*
		 * Get the header block and buffer pointer for the last good
		 * record before the bad record.
		 *
		 * Note that xlog_find_tail() clears the blocks at the new head
		 * (i.e., the records with invalid CRC) if the cycle number
		 * matches the current cycle.
		 */
		found = xlog_rseek_logrec_hdr(log, first_bad, *tail_blk, 1,
				buffer, rhead_blk, rhead, wrapped);
		if (found < 0)
			return found;
		if (found == 0)		/* XXX: right thing to do here? */
			return -EIO;

		/*
		 * Reset the head block to the starting block of the first bad
		 * log record and set the tail block based on the last good
		 * record.
		 *
		 * Bail out if the updated head/tail match as this indicates
		 * possible corruption outside of the acceptable
		 * (XLOG_MAX_ICLOGS) range. This is a job for xfs_repair...
		 */
		*head_blk = first_bad;
		*tail_blk = BLOCK_LSN(be64_to_cpu((*rhead)->h_tail_lsn));
		if (*head_blk == *tail_blk) {
			ASSERT(0);
			return 0;
		}
	}
	if (error)
		return error;

	return xlog_verify_tail(log, *head_blk, tail_blk,
				be32_to_cpu((*rhead)->h_size));
}

/*
 * We need to make sure we handle log wrapping properly, so we can't use the
 * calculated logbno directly. Make sure it wraps to the correct bno inside the
 * log.
 *
 * The log is limited to 32 bit sizes, so we use the appropriate modulus
 * operation here and cast it back to a 64 bit daddr on return.
 */
static inline xfs_daddr_t
xlog_wrap_logbno(
	struct xlog		*log,
	xfs_daddr_t		bno)
{
	int			mod;

	div_s64_rem(bno, log->l_logBBsize, &mod);
	return mod;
}

/*
 * Check whether the head of the log points to an unmount record. In other
 * words, determine whether the log is clean. If so, update the in-core state
 * appropriately.
 */
static int
xlog_check_unmount_rec(
	struct xlog		*log,
	xfs_daddr_t		*head_blk,
	xfs_daddr_t		*tail_blk,
	struct xlog_rec_header	*rhead,
	xfs_daddr_t		rhead_blk,
	char			*buffer,
	bool			*clean)
{
	struct xlog_op_header	*op_head;
	xfs_daddr_t		umount_data_blk;
	xfs_daddr_t		after_umount_blk;
	int			hblks;
	int			error;
	char			*offset;

	*clean = false;

	/*
	 * Look for unmount record. If we find it, then we know there was a
	 * clean unmount. Since 'i' could be the last block in the physical
	 * log, we convert to a log block before comparing to the head_blk.
	 *
	 * Save the current tail lsn to use to pass to xlog_clear_stale_blocks()
	 * below. We won't want to clear the unmount record if there is one, so
	 * we pass the lsn of the unmount record rather than the block after it.
	 */
	hblks = xlog_logrec_hblks(log, rhead);
	after_umount_blk = xlog_wrap_logbno(log,
			rhead_blk + hblks + BTOBB(be32_to_cpu(rhead->h_len)));

	if (*head_blk == after_umount_blk &&
	    be32_to_cpu(rhead->h_num_logops) == 1) {
		umount_data_blk = xlog_wrap_logbno(log, rhead_blk + hblks);
		error = xlog_bread(log, umount_data_blk, 1, buffer, &offset);
		if (error)
			return error;

		op_head = (struct xlog_op_header *)offset;
		if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
			/*
			 * Set tail and last sync so that newly written log
			 * records will point recovery to after the current
			 * unmount record.
			 */
			xlog_assign_atomic_lsn(&log->l_tail_lsn,
					log->l_curr_cycle, after_umount_blk);
			xlog_assign_atomic_lsn(&log->l_last_sync_lsn,
					log->l_curr_cycle, after_umount_blk);
			*tail_blk = after_umount_blk;

			*clean = true;
		}
	}

	return 0;
}

static void
xlog_set_state(
	struct xlog		*log,
	xfs_daddr_t		head_blk,
	struct xlog_rec_header	*rhead,
	xfs_daddr_t		rhead_blk,
	bool			bump_cycle)
{
	/*
	 * Reset log values according to the state of the log when we
	 * crashed.  In the case where head_blk == 0, we bump curr_cycle
	 * one because the next write starts a new cycle rather than
	 * continuing the cycle of the last good log record.  At this
	 * point we have guaranteed that all partial log records have been
	 * accounted for.  Therefore, we know that the last good log record
	 * written was complete and ended exactly on the end boundary
	 * of the physical log.
	 */
	log->l_prev_block = rhead_blk;
	log->l_curr_block = (int)head_blk;
	log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
	if (bump_cycle)
		log->l_curr_cycle++;
	atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn));
	atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn));
	xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle,
					BBTOB(log->l_curr_block));
	xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle,
					BBTOB(log->l_curr_block));
}

/*
 * Find the sync block number or the tail of the log.
 *
 * This will be the block number of the last record to have its
 * associated buffers synced to disk.  Every log record header has
 * a sync lsn embedded in it.  LSNs hold block numbers, so it is easy
 * to get a sync block number.  The only concern is to figure out which
 * log record header to believe.
 *
 * The following algorithm uses the log record header with the largest
 * lsn.  The entire log record does not need to be valid.  We only care
 * that the header is valid.
 *
 * We could speed up search by using current head_blk buffer, but it is not
 * available.
 */
STATIC int
xlog_find_tail(
	struct xlog		*log,
	xfs_daddr_t		*head_blk,
	xfs_daddr_t		*tail_blk)
{
	xlog_rec_header_t	*rhead;
	char			*offset = NULL;
	char			*buffer;
	int			error;
	xfs_daddr_t		rhead_blk;
	xfs_lsn_t		tail_lsn;
	bool			wrapped = false;
	bool			clean = false;

	/*
	 * Find previous log record
	 */
	if ((error = xlog_find_head(log, head_blk)))
		return error;
	ASSERT(*head_blk < INT_MAX);

	buffer = xlog_alloc_buffer(log, 1);
	if (!buffer)
		return -ENOMEM;
	if (*head_blk == 0) {				/* special case */
		error = xlog_bread(log, 0, 1, buffer, &offset);
		if (error)
			goto done;

		if (xlog_get_cycle(offset) == 0) {
			*tail_blk = 0;
			/* leave all other log inited values alone */
			goto done;
		}
	}

	/*
	 * Search backwards through the log looking for the log record header
	 * block. This wraps all the way back around to the head so something is
	 * seriously wrong if we can't find it.
	 */
	error = xlog_rseek_logrec_hdr(log, *head_blk, *head_blk, 1, buffer,
				      &rhead_blk, &rhead, &wrapped);
	if (error < 0)
		goto done;
	if (!error) {
		xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__);
		error = -EFSCORRUPTED;
		goto done;
	}
	*tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));

	/*
	 * Set the log state based on the current head record.
	 */
	xlog_set_state(log, *head_blk, rhead, rhead_blk, wrapped);
	tail_lsn = atomic64_read(&log->l_tail_lsn);

	/*
	 * Look for an unmount record at the head of the log. This sets the log
	 * state to determine whether recovery is necessary.
	 */
	error = xlog_check_unmount_rec(log, head_blk, tail_blk, rhead,
				       rhead_blk, buffer, &clean);
	if (error)
		goto done;

	/*
	 * Verify the log head if the log is not clean (e.g., we have anything
	 * but an unmount record at the head). This uses CRC verification to
	 * detect and trim torn writes. If discovered, CRC failures are
	 * considered torn writes and the log head is trimmed accordingly.
	 *
	 * Note that we can only run CRC verification when the log is dirty
	 * because there's no guarantee that the log data behind an unmount
	 * record is compatible with the current architecture.
	 */
	if (!clean) {
		xfs_daddr_t	orig_head = *head_blk;

		error = xlog_verify_head(log, head_blk, tail_blk, buffer,
					 &rhead_blk, &rhead, &wrapped);
		if (error)
			goto done;

		/* update in-core state again if the head changed */
		if (*head_blk != orig_head) {
			xlog_set_state(log, *head_blk, rhead, rhead_blk,
				       wrapped);
			tail_lsn = atomic64_read(&log->l_tail_lsn);
			error = xlog_check_unmount_rec(log, head_blk, tail_blk,
						       rhead, rhead_blk, buffer,
						       &clean);
			if (error)
				goto done;
		}
	}

	/*
	 * Note that the unmount was clean. If the unmount was not clean, we
	 * need to know this to rebuild the superblock counters from the perag
	 * headers if we have a filesystem using non-persistent counters.
	 */
	if (clean)
		log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;

	/*
	 * Make sure that there are no blocks in front of the head
	 * with the same cycle number as the head.  This can happen
	 * because we allow multiple outstanding log writes concurrently,
	 * and the later writes might make it out before earlier ones.
	 *
	 * We use the lsn from before modifying it so that we'll never
	 * overwrite the unmount record after a clean unmount.
	 *
	 * Do this only if we are going to recover the filesystem
	 *
	 * NOTE: This used to say "if (!readonly)"
	 * However on Linux, we can & do recover a read-only filesystem.
	 * We only skip recovery if NORECOVERY is specified on mount,
	 * in which case we would not be here.
	 *
	 * But... if the -device- itself is readonly, just skip this.
	 * We can't recover this device anyway, so it won't matter.
	 */
	if (!xfs_readonly_buftarg(log->l_targ))
		error = xlog_clear_stale_blocks(log, tail_lsn);

done:
	kmem_free(buffer);

	if (error)
		xfs_warn(log->l_mp, "failed to locate log tail");
	return error;
}

/*
 * Is the log zeroed at all?
 *
 * The last binary search should be changed to perform an X block read
 * once X becomes small enough.  You can then search linearly through
 * the X blocks.  This will cut down on the number of reads we need to do.
 *
 * If the log is partially zeroed, this routine will pass back the blkno
 * of the first block with cycle number 0.  It won't have a complete LR
 * preceding it.
 *
 * Return:
 *	0  => the log is completely written to
 *	1 => use *blk_no as the first block of the log
 *	<0 => error has occurred
 */
STATIC int
xlog_find_zeroed(
	struct xlog	*log,
	xfs_daddr_t	*blk_no)
{
	char		*buffer;
	char		*offset;
	uint	        first_cycle, last_cycle;
	xfs_daddr_t	new_blk, last_blk, start_blk;
	xfs_daddr_t     num_scan_bblks;
	int	        error, log_bbnum = log->l_logBBsize;

	*blk_no = 0;

	/* check totally zeroed log */
	buffer = xlog_alloc_buffer(log, 1);
	if (!buffer)
		return -ENOMEM;
	error = xlog_bread(log, 0, 1, buffer, &offset);
	if (error)
		goto out_free_buffer;

	first_cycle = xlog_get_cycle(offset);
	if (first_cycle == 0) {		/* completely zeroed log */
		*blk_no = 0;
		kmem_free(buffer);
		return 1;
	}

	/* check partially zeroed log */
	error = xlog_bread(log, log_bbnum-1, 1, buffer, &offset);
	if (error)
		goto out_free_buffer;

	last_cycle = xlog_get_cycle(offset);
	if (last_cycle != 0) {		/* log completely written to */
		kmem_free(buffer);
		return 0;
	}

	/* we have a partially zeroed log */
	last_blk = log_bbnum-1;
	error = xlog_find_cycle_start(log, buffer, 0, &last_blk, 0);
	if (error)
		goto out_free_buffer;

	/*
	 * Validate the answer.  Because there is no way to guarantee that
	 * the entire log is made up of log records which are the same size,
	 * we scan over the defined maximum blocks.  At this point, the maximum
	 * is not chosen to mean anything special.   XXXmiken
	 */
	num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
	ASSERT(num_scan_bblks <= INT_MAX);

	if (last_blk < num_scan_bblks)
		num_scan_bblks = last_blk;
	start_blk = last_blk - num_scan_bblks;

	/*
	 * We search for any instances of cycle number 0 that occur before
	 * our current estimate of the head.  What we're trying to detect is
	 *        1 ... | 0 | 1 | 0...
	 *                       ^ binary search ends here
	 */
	if ((error = xlog_find_verify_cycle(log, start_blk,
					 (int)num_scan_bblks, 0, &new_blk)))
		goto out_free_buffer;
	if (new_blk != -1)
		last_blk = new_blk;

	/*
	 * Potentially backup over partial log record write.  We don't need
	 * to search the end of the log because we know it is zero.
	 */
	error = xlog_find_verify_log_record(log, start_blk, &last_blk, 0);
	if (error == 1)
		error = -EIO;
	if (error)
		goto out_free_buffer;

	*blk_no = last_blk;
out_free_buffer:
	kmem_free(buffer);
	if (error)
		return error;
	return 1;
}

/*
 * These are simple subroutines used by xlog_clear_stale_blocks() below
 * to initialize a buffer full of empty log record headers and write
 * them into the log.
 */
STATIC void
xlog_add_record(
	struct xlog		*log,
	char			*buf,
	int			cycle,
	int			block,
	int			tail_cycle,
	int			tail_block)
{
	xlog_rec_header_t	*recp = (xlog_rec_header_t *)buf;

	memset(buf, 0, BBSIZE);
	recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
	recp->h_cycle = cpu_to_be32(cycle);
	recp->h_version = cpu_to_be32(
			xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
	recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
	recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
	recp->h_fmt = cpu_to_be32(XLOG_FMT);
	memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
}

STATIC int
xlog_write_log_records(
	struct xlog	*log,
	int		cycle,
	int		start_block,
	int		blocks,
	int		tail_cycle,
	int		tail_block)
{
	char		*offset;
	char		*buffer;
	int		balign, ealign;
	int		sectbb = log->l_sectBBsize;
	int		end_block = start_block + blocks;
	int		bufblks;
	int		error = 0;
	int		i, j = 0;

	/*
	 * Greedily allocate a buffer big enough to handle the full
	 * range of basic blocks to be written.  If that fails, try
	 * a smaller size.  We need to be able to write at least a
	 * log sector, or we're out of luck.
	 */
	bufblks = 1 << ffs(blocks);
	while (bufblks > log->l_logBBsize)
		bufblks >>= 1;
	while (!(buffer = xlog_alloc_buffer(log, bufblks))) {
		bufblks >>= 1;
		if (bufblks < sectbb)
			return -ENOMEM;
	}

	/* We may need to do a read at the start to fill in part of
	 * the buffer in the starting sector not covered by the first
	 * write below.
	 */
	balign = round_down(start_block, sectbb);
	if (balign != start_block) {
		error = xlog_bread_noalign(log, start_block, 1, buffer);
		if (error)
			goto out_free_buffer;

		j = start_block - balign;
	}

	for (i = start_block; i < end_block; i += bufblks) {
		int		bcount, endcount;

		bcount = min(bufblks, end_block - start_block);
		endcount = bcount - j;

		/* We may need to do a read at the end to fill in part of
		 * the buffer in the final sector not covered by the write.
		 * If this is the same sector as the above read, skip it.
		 */
		ealign = round_down(end_block, sectbb);
		if (j == 0 && (start_block + endcount > ealign)) {
			error = xlog_bread_noalign(log, ealign, sectbb,
					buffer + BBTOB(ealign - start_block));
			if (error)
				break;

		}

		offset = buffer + xlog_align(log, start_block);
		for (; j < endcount; j++) {
			xlog_add_record(log, offset, cycle, i+j,
					tail_cycle, tail_block);
			offset += BBSIZE;
		}
		error = xlog_bwrite(log, start_block, endcount, buffer);
		if (error)
			break;
		start_block += endcount;
		j = 0;
	}

out_free_buffer:
	kmem_free(buffer);
	return error;
}

/*
 * This routine is called to blow away any incomplete log writes out
 * in front of the log head.  We do this so that we won't become confused
 * if we come up, write only a little bit more, and then crash again.
 * If we leave the partial log records out there, this situation could
 * cause us to think those partial writes are valid blocks since they
 * have the current cycle number.  We get rid of them by overwriting them
 * with empty log records with the old cycle number rather than the
 * current one.
 *
 * The tail lsn is passed in rather than taken from
 * the log so that we will not write over the unmount record after a
 * clean unmount in a 512 block log.  Doing so would leave the log without
 * any valid log records in it until a new one was written.  If we crashed
 * during that time we would not be able to recover.
 */
STATIC int
xlog_clear_stale_blocks(
	struct xlog	*log,
	xfs_lsn_t	tail_lsn)
{
	int		tail_cycle, head_cycle;
	int		tail_block, head_block;
	int		tail_distance, max_distance;
	int		distance;
	int		error;

	tail_cycle = CYCLE_LSN(tail_lsn);
	tail_block = BLOCK_LSN(tail_lsn);
	head_cycle = log->l_curr_cycle;
	head_block = log->l_curr_block;

	/*
	 * Figure out the distance between the new head of the log
	 * and the tail.  We want to write over any blocks beyond the
	 * head that we may have written just before the crash, but
	 * we don't want to overwrite the tail of the log.
	 */
	if (head_cycle == tail_cycle) {
		/*
		 * The tail is behind the head in the physical log,
		 * so the distance from the head to the tail is the
		 * distance from the head to the end of the log plus
		 * the distance from the beginning of the log to the
		 * tail.
		 */
		if (XFS_IS_CORRUPT(log->l_mp,
				   head_block < tail_block ||
				   head_block >= log->l_logBBsize))
			return -EFSCORRUPTED;
		tail_distance = tail_block + (log->l_logBBsize - head_block);
	} else {
		/*
		 * The head is behind the tail in the physical log,
		 * so the distance from the head to the tail is just
		 * the tail block minus the head block.
		 */
		if (XFS_IS_CORRUPT(log->l_mp,
				   head_block >= tail_block ||
				   head_cycle != tail_cycle + 1))
			return -EFSCORRUPTED;
		tail_distance = tail_block - head_block;
	}

	/*
	 * If the head is right up against the tail, we can't clear
	 * anything.
	 */
	if (tail_distance <= 0) {
		ASSERT(tail_distance == 0);
		return 0;
	}

	max_distance = XLOG_TOTAL_REC_SHIFT(log);
	/*
	 * Take the smaller of the maximum amount of outstanding I/O
	 * we could have and the distance to the tail to clear out.
	 * We take the smaller so that we don't overwrite the tail and
	 * we don't waste all day writing from the head to the tail
	 * for no reason.
	 */
	max_distance = min(max_distance, tail_distance);

	if ((head_block + max_distance) <= log->l_logBBsize) {
		/*
		 * We can stomp all the blocks we need to without
		 * wrapping around the end of the log.  Just do it
		 * in a single write.  Use the cycle number of the
		 * current cycle minus one so that the log will look like:
		 *     n ... | n - 1 ...
		 */
		error = xlog_write_log_records(log, (head_cycle - 1),
				head_block, max_distance, tail_cycle,
				tail_block);
		if (error)
			return error;
	} else {
		/*
		 * We need to wrap around the end of the physical log in
		 * order to clear all the blocks.  Do it in two separate
		 * I/Os.  The first write should be from the head to the
		 * end of the physical log, and it should use the current
		 * cycle number minus one just like above.
		 */
		distance = log->l_logBBsize - head_block;
		error = xlog_write_log_records(log, (head_cycle - 1),
				head_block, distance, tail_cycle,
				tail_block);

		if (error)
			return error;

		/*
		 * Now write the blocks at the start of the physical log.
		 * This writes the remainder of the blocks we want to clear.
		 * It uses the current cycle number since we're now on the
		 * same cycle as the head so that we get:
		 *    n ... n ... | n - 1 ...
		 *    ^^^^^ blocks we're writing
		 */
		distance = max_distance - (log->l_logBBsize - head_block);
		error = xlog_write_log_records(log, head_cycle, 0, distance,
				tail_cycle, tail_block);
		if (error)
			return error;
	}

	return 0;
}

/*
 * Release the recovered intent item in the AIL that matches the given intent
 * type and intent id.
 */
void
xlog_recover_release_intent(
	struct xlog		*log,
	unsigned short		intent_type,
	uint64_t		intent_id)
{
	struct xfs_ail_cursor	cur;
	struct xfs_log_item	*lip;
	struct xfs_ail		*ailp = log->l_ailp;

	spin_lock(&ailp->ail_lock);
	for (lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); lip != NULL;
	     lip = xfs_trans_ail_cursor_next(ailp, &cur)) {
		if (lip->li_type != intent_type)
			continue;
		if (!lip->li_ops->iop_match(lip, intent_id))
			continue;

		spin_unlock(&ailp->ail_lock);
		lip->li_ops->iop_release(lip);
		spin_lock(&ailp->ail_lock);
		break;
	}

	xfs_trans_ail_cursor_done(&cur);
	spin_unlock(&ailp->ail_lock);
}

/******************************************************************************
 *
 *		Log recover routines
 *
 ******************************************************************************
 */
static const struct xlog_recover_item_ops *xlog_recover_item_ops[] = {
	&xlog_buf_item_ops,
	&xlog_inode_item_ops,
	&xlog_dquot_item_ops,
	&xlog_quotaoff_item_ops,
	&xlog_icreate_item_ops,
	&xlog_efi_item_ops,
	&xlog_efd_item_ops,
	&xlog_rui_item_ops,
	&xlog_rud_item_ops,
	&xlog_cui_item_ops,
	&xlog_cud_item_ops,
	&xlog_bui_item_ops,
	&xlog_bud_item_ops,
};

static const struct xlog_recover_item_ops *
xlog_find_item_ops(
	struct xlog_recover_item		*item)
{
	unsigned int				i;

	for (i = 0; i < ARRAY_SIZE(xlog_recover_item_ops); i++)
		if (ITEM_TYPE(item) == xlog_recover_item_ops[i]->item_type)
			return xlog_recover_item_ops[i];

	return NULL;
}

/*
 * Sort the log items in the transaction.
 *
 * The ordering constraints are defined by the inode allocation and unlink
 * behaviour. The rules are:
 *
 *	1. Every item is only logged once in a given transaction. Hence it
 *	   represents the last logged state of the item. Hence ordering is
 *	   dependent on the order in which operations need to be performed so
 *	   required initial conditions are always met.
 *
 *	2. Cancelled buffers are recorded in pass 1 in a separate table and
 *	   there's nothing to replay from them so we can simply cull them
 *	   from the transaction. However, we can't do that until after we've
 *	   replayed all the other items because they may be dependent on the
 *	   cancelled buffer and replaying the cancelled buffer can remove it
 *	   form the cancelled buffer table. Hence they have tobe done last.
 *
 *	3. Inode allocation buffers must be replayed before inode items that
 *	   read the buffer and replay changes into it. For filesystems using the
 *	   ICREATE transactions, this means XFS_LI_ICREATE objects need to get
 *	   treated the same as inode allocation buffers as they create and
 *	   initialise the buffers directly.
 *
 *	4. Inode unlink buffers must be replayed after inode items are replayed.
 *	   This ensures that inodes are completely flushed to the inode buffer
 *	   in a "free" state before we remove the unlinked inode list pointer.
 *
 * Hence the ordering needs to be inode allocation buffers first, inode items
 * second, inode unlink buffers third and cancelled buffers last.
 *
 * But there's a problem with that - we can't tell an inode allocation buffer
 * apart from a regular buffer, so we can't separate them. We can, however,
 * tell an inode unlink buffer from the others, and so we can separate them out
 * from all the other buffers and move them to last.
 *
 * Hence, 4 lists, in order from head to tail:
 *	- buffer_list for all buffers except cancelled/inode unlink buffers
 *	- item_list for all non-buffer items
 *	- inode_buffer_list for inode unlink buffers
 *	- cancel_list for the cancelled buffers
 *
 * Note that we add objects to the tail of the lists so that first-to-last
 * ordering is preserved within the lists. Adding objects to the head of the
 * list means when we traverse from the head we walk them in last-to-first
 * order. For cancelled buffers and inode unlink buffers this doesn't matter,
 * but for all other items there may be specific ordering that we need to
 * preserve.
 */
STATIC int
xlog_recover_reorder_trans(
	struct xlog		*log,
	struct xlog_recover	*trans,
	int			pass)
{
	struct xlog_recover_item *item, *n;
	int			error = 0;
	LIST_HEAD(sort_list);
	LIST_HEAD(cancel_list);
	LIST_HEAD(buffer_list);
	LIST_HEAD(inode_buffer_list);
	LIST_HEAD(item_list);

	list_splice_init(&trans->r_itemq, &sort_list);
	list_for_each_entry_safe(item, n, &sort_list, ri_list) {
		enum xlog_recover_reorder	fate = XLOG_REORDER_ITEM_LIST;

		item->ri_ops = xlog_find_item_ops(item);
		if (!item->ri_ops) {
			xfs_warn(log->l_mp,
				"%s: unrecognized type of log operation (%d)",
				__func__, ITEM_TYPE(item));
			ASSERT(0);
			/*
			 * return the remaining items back to the transaction
			 * item list so they can be freed in caller.
			 */
			if (!list_empty(&sort_list))
				list_splice_init(&sort_list, &trans->r_itemq);
			error = -EFSCORRUPTED;
			break;
		}

		if (item->ri_ops->reorder)
			fate = item->ri_ops->reorder(item);

		switch (fate) {
		case XLOG_REORDER_BUFFER_LIST:
			list_move_tail(&item->ri_list, &buffer_list);
			break;
		case XLOG_REORDER_CANCEL_LIST:
			trace_xfs_log_recover_item_reorder_head(log,
					trans, item, pass);
			list_move(&item->ri_list, &cancel_list);
			break;
		case XLOG_REORDER_INODE_BUFFER_LIST:
			list_move(&item->ri_list, &inode_buffer_list);
			break;
		case XLOG_REORDER_ITEM_LIST:
			trace_xfs_log_recover_item_reorder_tail(log,
							trans, item, pass);
			list_move_tail(&item->ri_list, &item_list);
			break;
		}
	}

	ASSERT(list_empty(&sort_list));
	if (!list_empty(&buffer_list))
		list_splice(&buffer_list, &trans->r_itemq);
	if (!list_empty(&item_list))
		list_splice_tail(&item_list, &trans->r_itemq);
	if (!list_empty(&inode_buffer_list))
		list_splice_tail(&inode_buffer_list, &trans->r_itemq);
	if (!list_empty(&cancel_list))
		list_splice_tail(&cancel_list, &trans->r_itemq);
	return error;
}

void
xlog_buf_readahead(
	struct xlog		*log,
	xfs_daddr_t		blkno,
	uint			len,
	const struct xfs_buf_ops *ops)
{
	if (!xlog_is_buffer_cancelled(log, blkno, len))
		xfs_buf_readahead(log->l_mp->m_ddev_targp, blkno, len, ops);
}

STATIC int
xlog_recover_items_pass2(
	struct xlog                     *log,
	struct xlog_recover             *trans,
	struct list_head                *buffer_list,
	struct list_head                *item_list)
{
	struct xlog_recover_item	*item;
	int				error = 0;

	list_for_each_entry(item, item_list, ri_list) {
		trace_xfs_log_recover_item_recover(log, trans, item,
				XLOG_RECOVER_PASS2);

		if (item->ri_ops->commit_pass2)
			error = item->ri_ops->commit_pass2(log, buffer_list,
					item, trans->r_lsn);
		if (error)
			return error;
	}

	return error;
}

/*
 * Perform the transaction.
 *
 * If the transaction modifies a buffer or inode, do it now.  Otherwise,
 * EFIs and EFDs get queued up by adding entries into the AIL for them.
 */
STATIC int
xlog_recover_commit_trans(
	struct xlog		*log,
	struct xlog_recover	*trans,
	int			pass,
	struct list_head	*buffer_list)
{
	int				error = 0;
	int				items_queued = 0;
	struct xlog_recover_item	*item;
	struct xlog_recover_item	*next;
	LIST_HEAD			(ra_list);
	LIST_HEAD			(done_list);

	#define XLOG_RECOVER_COMMIT_QUEUE_MAX 100

	hlist_del_init(&trans->r_list);

	error = xlog_recover_reorder_trans(log, trans, pass);
	if (error)
		return error;

	list_for_each_entry_safe(item, next, &trans->r_itemq, ri_list) {
		trace_xfs_log_recover_item_recover(log, trans, item, pass);

		switch (pass) {
		case XLOG_RECOVER_PASS1:
			if (item->ri_ops->commit_pass1)
				error = item->ri_ops->commit_pass1(log, item);
			break;
		case XLOG_RECOVER_PASS2:
			if (item->ri_ops->ra_pass2)
				item->ri_ops->ra_pass2(log, item);
			list_move_tail(&item->ri_list, &ra_list);
			items_queued++;
			if (items_queued >= XLOG_RECOVER_COMMIT_QUEUE_MAX) {
				error = xlog_recover_items_pass2(log, trans,
						buffer_list, &ra_list);
				list_splice_tail_init(&ra_list, &done_list);
				items_queued = 0;
			}

			break;
		default:
			ASSERT(0);
		}

		if (error)
			goto out;
	}

out:
	if (!list_empty(&ra_list)) {
		if (!error)
			error = xlog_recover_items_pass2(log, trans,
					buffer_list, &ra_list);
		list_splice_tail_init(&ra_list, &done_list);
	}

	if (!list_empty(&done_list))
		list_splice_init(&done_list, &trans->r_itemq);

	return error;
}

STATIC void
xlog_recover_add_item(
	struct list_head	*head)
{
	struct xlog_recover_item *item;

	item = kmem_zalloc(sizeof(struct xlog_recover_item), 0);
	INIT_LIST_HEAD(&item->ri_list);
	list_add_tail(&item->ri_list, head);
}

STATIC int
xlog_recover_add_to_cont_trans(
	struct xlog		*log,
	struct xlog_recover	*trans,
	char			*dp,
	int			len)
{
	struct xlog_recover_item *item;
	char			*ptr, *old_ptr;
	int			old_len;

	/*
	 * If the transaction is empty, the header was split across this and the
	 * previous record. Copy the rest of the header.
	 */
	if (list_empty(&trans->r_itemq)) {
		ASSERT(len <= sizeof(struct xfs_trans_header));
		if (len > sizeof(struct xfs_trans_header)) {
			xfs_warn(log->l_mp, "%s: bad header length", __func__);
			return -EFSCORRUPTED;
		}

		xlog_recover_add_item(&trans->r_itemq);
		ptr = (char *)&trans->r_theader +
				sizeof(struct xfs_trans_header) - len;
		memcpy(ptr, dp, len);
		return 0;
	}

	/* take the tail entry */
	item = list_entry(trans->r_itemq.prev, struct xlog_recover_item,
			  ri_list);

	old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
	old_len = item->ri_buf[item->ri_cnt-1].i_len;

	ptr = krealloc(old_ptr, len + old_len, GFP_KERNEL | __GFP_NOFAIL);
	memcpy(&ptr[old_len], dp, len);
	item->ri_buf[item->ri_cnt-1].i_len += len;
	item->ri_buf[item->ri_cnt-1].i_addr = ptr;
	trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
	return 0;
}

/*
 * The next region to add is the start of a new region.  It could be
 * a whole region or it could be the first part of a new region.  Because
 * of this, the assumption here is that the type and size fields of all
 * format structures fit into the first 32 bits of the structure.
 *
 * This works because all regions must be 32 bit aligned.  Therefore, we
 * either have both fields or we have neither field.  In the case we have
 * neither field, the data part of the region is zero length.  We only have
 * a log_op_header and can throw away the header since a new one will appear
 * later.  If we have at least 4 bytes, then we can determine how many regions
 * will appear in the current log item.
 */
STATIC int
xlog_recover_add_to_trans(
	struct xlog		*log,
	struct xlog_recover	*trans,
	char			*dp,
	int			len)
{
	struct xfs_inode_log_format	*in_f;			/* any will do */
	struct xlog_recover_item *item;
	char			*ptr;

	if (!len)
		return 0;
	if (list_empty(&trans->r_itemq)) {
		/* we need to catch log corruptions here */
		if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
			xfs_warn(log->l_mp, "%s: bad header magic number",
				__func__);
			ASSERT(0);
			return -EFSCORRUPTED;
		}

		if (len > sizeof(struct xfs_trans_header)) {
			xfs_warn(log->l_mp, "%s: bad header length", __func__);
			ASSERT(0);
			return -EFSCORRUPTED;
		}

		/*
		 * The transaction header can be arbitrarily split across op
		 * records. If we don't have the whole thing here, copy what we
		 * do have and handle the rest in the next record.
		 */
		if (len == sizeof(struct xfs_trans_header))
			xlog_recover_add_item(&trans->r_itemq);
		memcpy(&trans->r_theader, dp, len);
		return 0;
	}

	ptr = kmem_alloc(len, 0);
	memcpy(ptr, dp, len);
	in_f = (struct xfs_inode_log_format *)ptr;

	/* take the tail entry */
	item = list_entry(trans->r_itemq.prev, struct xlog_recover_item,
			  ri_list);
	if (item->ri_total != 0 &&
	     item->ri_total == item->ri_cnt) {
		/* tail item is in use, get a new one */
		xlog_recover_add_item(&trans->r_itemq);
		item = list_entry(trans->r_itemq.prev,
					struct xlog_recover_item, ri_list);
	}

	if (item->ri_total == 0) {		/* first region to be added */
		if (in_f->ilf_size == 0 ||
		    in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
			xfs_warn(log->l_mp,
		"bad number of regions (%d) in inode log format",
				  in_f->ilf_size);
			ASSERT(0);
			kmem_free(ptr);
			return -EFSCORRUPTED;
		}

		item->ri_total = in_f->ilf_size;
		item->ri_buf =
			kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
				    0);
	}

	if (item->ri_total <= item->ri_cnt) {
		xfs_warn(log->l_mp,
	"log item region count (%d) overflowed size (%d)",
				item->ri_cnt, item->ri_total);
		ASSERT(0);
		kmem_free(ptr);
		return -EFSCORRUPTED;
	}

	/* Description region is ri_buf[0] */
	item->ri_buf[item->ri_cnt].i_addr = ptr;
	item->ri_buf[item->ri_cnt].i_len  = len;
	item->ri_cnt++;
	trace_xfs_log_recover_item_add(log, trans, item, 0);
	return 0;
}

/*
 * Free up any resources allocated by the transaction
 *
 * Remember that EFIs, EFDs, and IUNLINKs are handled later.
 */
STATIC void
xlog_recover_free_trans(
	struct xlog_recover	*trans)
{
	struct xlog_recover_item *item, *n;
	int			i;

	hlist_del_init(&trans->r_list);

	list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
		/* Free the regions in the item. */
		list_del(&item->ri_list);
		for (i = 0; i < item->ri_cnt; i++)
			kmem_free(item->ri_buf[i].i_addr);
		/* Free the item itself */
		kmem_free(item->ri_buf);
		kmem_free(item);
	}
	/* Free the transaction recover structure */
	kmem_free(trans);
}

/*
 * On error or completion, trans is freed.
 */
STATIC int
xlog_recovery_process_trans(
	struct xlog		*log,
	struct xlog_recover	*trans,
	char			*dp,
	unsigned int		len,
	unsigned int		flags,
	int			pass,
	struct list_head	*buffer_list)
{
	int			error = 0;
	bool			freeit = false;

	/* mask off ophdr transaction container flags */
	flags &= ~XLOG_END_TRANS;
	if (flags & XLOG_WAS_CONT_TRANS)
		flags &= ~XLOG_CONTINUE_TRANS;

	/*
	 * Callees must not free the trans structure. We'll decide if we need to
	 * free it or not based on the operation being done and it's result.
	 */
	switch (flags) {
	/* expected flag values */
	case 0:
	case XLOG_CONTINUE_TRANS:
		error = xlog_recover_add_to_trans(log, trans, dp, len);
		break;
	case XLOG_WAS_CONT_TRANS:
		error = xlog_recover_add_to_cont_trans(log, trans, dp, len);
		break;
	case XLOG_COMMIT_TRANS:
		error = xlog_recover_commit_trans(log, trans, pass,
						  buffer_list);
		/* success or fail, we are now done with this transaction. */
		freeit = true;
		break;

	/* unexpected flag values */
	case XLOG_UNMOUNT_TRANS:
		/* just skip trans */
		xfs_warn(log->l_mp, "%s: Unmount LR", __func__);
		freeit = true;
		break;
	case XLOG_START_TRANS:
	default:
		xfs_warn(log->l_mp, "%s: bad flag 0x%x", __func__, flags);
		ASSERT(0);
		error = -EFSCORRUPTED;
		break;
	}
	if (error || freeit)
		xlog_recover_free_trans(trans);
	return error;
}

/*
 * Lookup the transaction recovery structure associated with the ID in the
 * current ophdr. If the transaction doesn't exist and the start flag is set in
 * the ophdr, then allocate a new transaction for future ID matches to find.
 * Either way, return what we found during the lookup - an existing transaction
 * or nothing.
 */
STATIC struct xlog_recover *
xlog_recover_ophdr_to_trans(
	struct hlist_head	rhash[],
	struct xlog_rec_header	*rhead,
	struct xlog_op_header	*ohead)
{
	struct xlog_recover	*trans;
	xlog_tid_t		tid;
	struct hlist_head	*rhp;

	tid = be32_to_cpu(ohead->oh_tid);
	rhp = &rhash[XLOG_RHASH(tid)];
	hlist_for_each_entry(trans, rhp, r_list) {
		if (trans->r_log_tid == tid)
			return trans;
	}

	/*
	 * skip over non-start transaction headers - we could be
	 * processing slack space before the next transaction starts
	 */
	if (!(ohead->oh_flags & XLOG_START_TRANS))
		return NULL;

	ASSERT(be32_to_cpu(ohead->oh_len) == 0);

	/*
	 * This is a new transaction so allocate a new recovery container to
	 * hold the recovery ops that will follow.
	 */
	trans = kmem_zalloc(sizeof(struct xlog_recover), 0);
	trans->r_log_tid = tid;
	trans->r_lsn = be64_to_cpu(rhead->h_lsn);
	INIT_LIST_HEAD(&trans->r_itemq);
	INIT_HLIST_NODE(&trans->r_list);
	hlist_add_head(&trans->r_list, rhp);

	/*
	 * Nothing more to do for this ophdr. Items to be added to this new
	 * transaction will be in subsequent ophdr containers.
	 */
	return NULL;
}

STATIC int
xlog_recover_process_ophdr(
	struct xlog		*log,
	struct hlist_head	rhash[],
	struct xlog_rec_header	*rhead,
	struct xlog_op_header	*ohead,
	char			*dp,
	char			*end,
	int			pass,
	struct list_head	*buffer_list)
{
	struct xlog_recover	*trans;
	unsigned int		len;
	int			error;

	/* Do we understand who wrote this op? */
	if (ohead->oh_clientid != XFS_TRANSACTION &&
	    ohead->oh_clientid != XFS_LOG) {
		xfs_warn(log->l_mp, "%s: bad clientid 0x%x",
			__func__, ohead->oh_clientid);
		ASSERT(0);
		return -EFSCORRUPTED;
	}

	/*
	 * Check the ophdr contains all the data it is supposed to contain.
	 */
	len = be32_to_cpu(ohead->oh_len);
	if (dp + len > end) {
		xfs_warn(log->l_mp, "%s: bad length 0x%x", __func__, len);
		WARN_ON(1);
		return -EFSCORRUPTED;
	}

	trans = xlog_recover_ophdr_to_trans(rhash, rhead, ohead);
	if (!trans) {
		/* nothing to do, so skip over this ophdr */
		return 0;
	}

	/*
	 * The recovered buffer queue is drained only once we know that all
	 * recovery items for the current LSN have been processed. This is
	 * required because:
	 *
	 * - Buffer write submission updates the metadata LSN of the buffer.
	 * - Log recovery skips items with a metadata LSN >= the current LSN of
	 *   the recovery item.
	 * - Separate recovery items against the same metadata buffer can share
	 *   a current LSN. I.e., consider that the LSN of a recovery item is
	 *   defined as the starting LSN of the first record in which its
	 *   transaction appears, that a record can hold multiple transactions,
	 *   and/or that a transaction can span multiple records.
	 *
	 * In other words, we are allowed to submit a buffer from log recovery
	 * once per current LSN. Otherwise, we may incorrectly skip recovery
	 * items and cause corruption.
	 *
	 * We don't know up front whether buffers are updated multiple times per
	 * LSN. Therefore, track the current LSN of each commit log record as it
	 * is processed and drain the queue when it changes. Use commit records
	 * because they are ordered correctly by the logging code.
	 */
	if (log->l_recovery_lsn != trans->r_lsn &&
	    ohead->oh_flags & XLOG_COMMIT_TRANS) {
		error = xfs_buf_delwri_submit(buffer_list);
		if (error)
			return error;
		log->l_recovery_lsn = trans->r_lsn;
	}

	return xlog_recovery_process_trans(log, trans, dp, len,
					   ohead->oh_flags, pass, buffer_list);
}

/*
 * There are two valid states of the r_state field.  0 indicates that the
 * transaction structure is in a normal state.  We have either seen the
 * start of the transaction or the last operation we added was not a partial
 * operation.  If the last operation we added to the transaction was a
 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
 *
 * NOTE: skip LRs with 0 data length.
 */
STATIC int
xlog_recover_process_data(
	struct xlog		*log,
	struct hlist_head	rhash[],
	struct xlog_rec_header	*rhead,
	char			*dp,
	int			pass,
	struct list_head	*buffer_list)
{
	struct xlog_op_header	*ohead;
	char			*end;
	int			num_logops;
	int			error;

	end = dp + be32_to_cpu(rhead->h_len);
	num_logops = be32_to_cpu(rhead->h_num_logops);

	/* check the log format matches our own - else we can't recover */
	if (xlog_header_check_recover(log->l_mp, rhead))
		return -EIO;

	trace_xfs_log_recover_record(log, rhead, pass);
	while ((dp < end) && num_logops) {

		ohead = (struct xlog_op_header *)dp;
		dp += sizeof(*ohead);
		ASSERT(dp <= end);

		/* errors will abort recovery */
		error = xlog_recover_process_ophdr(log, rhash, rhead, ohead,
						   dp, end, pass, buffer_list);
		if (error)
			return error;

		dp += be32_to_cpu(ohead->oh_len);
		num_logops--;
	}
	return 0;
}

/* Take all the collected deferred ops and finish them in order. */
static int
xlog_finish_defer_ops(
	struct xfs_mount	*mp,
	struct list_head	*capture_list)
{
	struct xfs_defer_capture *dfc, *next;
	struct xfs_trans	*tp;
	struct xfs_inode	*ip;
	int			error = 0;

	list_for_each_entry_safe(dfc, next, capture_list, dfc_list) {
		struct xfs_trans_res	resv;

		/*
		 * Create a new transaction reservation from the captured
		 * information.  Set logcount to 1 to force the new transaction
		 * to regrant every roll so that we can make forward progress
		 * in recovery no matter how full the log might be.
		 */
		resv.tr_logres = dfc->dfc_logres;
		resv.tr_logcount = 1;
		resv.tr_logflags = XFS_TRANS_PERM_LOG_RES;

		error = xfs_trans_alloc(mp, &resv, dfc->dfc_blkres,
				dfc->dfc_rtxres, XFS_TRANS_RESERVE, &tp);
		if (error)
			return error;

		/*
		 * Transfer to this new transaction all the dfops we captured
		 * from recovering a single intent item.
		 */
		list_del_init(&dfc->dfc_list);
		xfs_defer_ops_continue(dfc, tp, &ip);

		error = xfs_trans_commit(tp);
		if (ip) {
			xfs_iunlock(ip, XFS_ILOCK_EXCL);
			xfs_irele(ip);
		}
		if (error)
			return error;
	}

	ASSERT(list_empty(capture_list));
	return 0;
}

/* Release all the captured defer ops and capture structures in this list. */
static void
xlog_abort_defer_ops(
	struct xfs_mount		*mp,
	struct list_head		*capture_list)
{
	struct xfs_defer_capture	*dfc;
	struct xfs_defer_capture	*next;

	list_for_each_entry_safe(dfc, next, capture_list, dfc_list) {
		list_del_init(&dfc->dfc_list);
		xfs_defer_ops_release(mp, dfc);
	}
}
/*
 * When this is called, all of the log intent items which did not have
 * corresponding log done items should be in the AIL.  What we do now
 * is update the data structures associated with each one.
 *
 * Since we process the log intent items in normal transactions, they
 * will be removed at some point after the commit.  This prevents us
 * from just walking down the list processing each one.  We'll use a
 * flag in the intent item to skip those that we've already processed
 * and use the AIL iteration mechanism's generation count to try to
 * speed this up at least a bit.
 *
 * When we start, we know that the intents are the only things in the
 * AIL.  As we process them, however, other items are added to the
 * AIL.
 */
STATIC int
xlog_recover_process_intents(
	struct xlog		*log)
{
	LIST_HEAD(capture_list);
	struct xfs_ail_cursor	cur;
	struct xfs_log_item	*lip;
	struct xfs_ail		*ailp;
	int			error = 0;
#if defined(DEBUG) || defined(XFS_WARN)
	xfs_lsn_t		last_lsn;
#endif

	ailp = log->l_ailp;
	spin_lock(&ailp->ail_lock);
#if defined(DEBUG) || defined(XFS_WARN)
	last_lsn = xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block);
#endif
	for (lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
	     lip != NULL;
	     lip = xfs_trans_ail_cursor_next(ailp, &cur)) {
		/*
		 * We're done when we see something other than an intent.
		 * There should be no intents left in the AIL now.
		 */
		if (!xlog_item_is_intent(lip)) {
#ifdef DEBUG
			for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
				ASSERT(!xlog_item_is_intent(lip));
#endif
			break;
		}

		/*
		 * We should never see a redo item with a LSN higher than
		 * the last transaction we found in the log at the start
		 * of recovery.
		 */
		ASSERT(XFS_LSN_CMP(last_lsn, lip->li_lsn) >= 0);

		/*
		 * NOTE: If your intent processing routine can create more
		 * deferred ops, you /must/ attach them to the capture list in
		 * the recover routine or else those subsequent intents will be
		 * replayed in the wrong order!
		 */
		spin_unlock(&ailp->ail_lock);
		error = lip->li_ops->iop_recover(lip, &capture_list);
		spin_lock(&ailp->ail_lock);
		if (error)
			break;
	}

	xfs_trans_ail_cursor_done(&cur);
	spin_unlock(&ailp->ail_lock);
	if (error)
		goto err;

	error = xlog_finish_defer_ops(log->l_mp, &capture_list);
	if (error)
		goto err;

	return 0;
err:
	xlog_abort_defer_ops(log->l_mp, &capture_list);
	return error;
}

/*
 * A cancel occurs when the mount has failed and we're bailing out.
 * Release all pending log intent items so they don't pin the AIL.
 */
STATIC void
xlog_recover_cancel_intents(
	struct xlog		*log)
{
	struct xfs_log_item	*lip;
	struct xfs_ail_cursor	cur;
	struct xfs_ail		*ailp;

	ailp = log->l_ailp;
	spin_lock(&ailp->ail_lock);
	lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
	while (lip != NULL) {
		/*
		 * We're done when we see something other than an intent.
		 * There should be no intents left in the AIL now.
		 */
		if (!xlog_item_is_intent(lip)) {
#ifdef DEBUG
			for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
				ASSERT(!xlog_item_is_intent(lip));
#endif
			break;
		}

		spin_unlock(&ailp->ail_lock);
		lip->li_ops->iop_release(lip);
		spin_lock(&ailp->ail_lock);
		lip = xfs_trans_ail_cursor_next(ailp, &cur);
	}

	xfs_trans_ail_cursor_done(&cur);
	spin_unlock(&ailp->ail_lock);
}

/*
 * This routine performs a transaction to null out a bad inode pointer
 * in an agi unlinked inode hash bucket.
 */
STATIC void
xlog_recover_clear_agi_bucket(
	xfs_mount_t	*mp,
	xfs_agnumber_t	agno,
	int		bucket)
{
	xfs_trans_t	*tp;
	xfs_agi_t	*agi;
	xfs_buf_t	*agibp;
	int		offset;
	int		error;

	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_clearagi, 0, 0, 0, &tp);
	if (error)
		goto out_error;

	error = xfs_read_agi(mp, tp, agno, &agibp);
	if (error)
		goto out_abort;

	agi = agibp->b_addr;
	agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
	offset = offsetof(xfs_agi_t, agi_unlinked) +
		 (sizeof(xfs_agino_t) * bucket);
	xfs_trans_log_buf(tp, agibp, offset,
			  (offset + sizeof(xfs_agino_t) - 1));

	error = xfs_trans_commit(tp);
	if (error)
		goto out_error;
	return;

out_abort:
	xfs_trans_cancel(tp);
out_error:
	xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno);
	return;
}

STATIC xfs_agino_t
xlog_recover_process_one_iunlink(
	struct xfs_mount		*mp,
	xfs_agnumber_t			agno,
	xfs_agino_t			agino,
	int				bucket)
{
	struct xfs_buf			*ibp;
	struct xfs_dinode		*dip;
	struct xfs_inode		*ip;
	xfs_ino_t			ino;
	int				error;

	ino = XFS_AGINO_TO_INO(mp, agno, agino);
	error = xfs_iget(mp, NULL, ino, 0, 0, &ip);
	if (error)
		goto fail;

	/*
	 * Get the on disk inode to find the next inode in the bucket.
	 */
	error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &ibp, 0);
	if (error)
		goto fail_iput;

	xfs_iflags_clear(ip, XFS_IRECOVERY);
	ASSERT(VFS_I(ip)->i_nlink == 0);
	ASSERT(VFS_I(ip)->i_mode != 0);

	/* setup for the next pass */
	agino = be32_to_cpu(dip->di_next_unlinked);
	xfs_buf_relse(ibp);

	/*
	 * Prevent any DMAPI event from being sent when the reference on
	 * the inode is dropped.
	 */
	ip->i_d.di_dmevmask = 0;

	xfs_irele(ip);
	return agino;

 fail_iput:
	xfs_irele(ip);
 fail:
	/*
	 * We can't read in the inode this bucket points to, or this inode
	 * is messed up.  Just ditch this bucket of inodes.  We will lose
	 * some inodes and space, but at least we won't hang.
	 *
	 * Call xlog_recover_clear_agi_bucket() to perform a transaction to
	 * clear the inode pointer in the bucket.
	 */
	xlog_recover_clear_agi_bucket(mp, agno, bucket);
	return NULLAGINO;
}

/*
 * Recover AGI unlinked lists
 *
 * This is called during recovery to process any inodes which we unlinked but
 * not freed when the system crashed.  These inodes will be on the lists in the
 * AGI blocks. What we do here is scan all the AGIs and fully truncate and free
 * any inodes found on the lists. Each inode is removed from the lists when it
 * has been fully truncated and is freed. The freeing of the inode and its
 * removal from the list must be atomic.
 *
 * If everything we touch in the agi processing loop is already in memory, this
 * loop can hold the cpu for a long time. It runs without lock contention,
 * memory allocation contention, the need wait for IO, etc, and so will run
 * until we either run out of inodes to process, run low on memory or we run out
 * of log space.
 *
 * This behaviour is bad for latency on single CPU and non-preemptible kernels,
 * and can prevent other filesytem work (such as CIL pushes) from running. This
 * can lead to deadlocks if the recovery process runs out of log reservation
 * space. Hence we need to yield the CPU when there is other kernel work
 * scheduled on this CPU to ensure other scheduled work can run without undue
 * latency.
 */
STATIC void
xlog_recover_process_iunlinks(
	struct xlog	*log)
{
	xfs_mount_t	*mp;
	xfs_agnumber_t	agno;
	xfs_agi_t	*agi;
	xfs_buf_t	*agibp;
	xfs_agino_t	agino;
	int		bucket;
	int		error;

	mp = log->l_mp;

	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
		/*
		 * Find the agi for this ag.
		 */
		error = xfs_read_agi(mp, NULL, agno, &agibp);
		if (error) {
			/*
			 * AGI is b0rked. Don't process it.
			 *
			 * We should probably mark the filesystem as corrupt
			 * after we've recovered all the ag's we can....
			 */
			continue;
		}
		/*
		 * Unlock the buffer so that it can be acquired in the normal
		 * course of the transaction to truncate and free each inode.
		 * Because we are not racing with anyone else here for the AGI
		 * buffer, we don't even need to hold it locked to read the
		 * initial unlinked bucket entries out of the buffer. We keep
		 * buffer reference though, so that it stays pinned in memory
		 * while we need the buffer.
		 */
		agi = agibp->b_addr;
		xfs_buf_unlock(agibp);

		for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
			agino = be32_to_cpu(agi->agi_unlinked[bucket]);
			while (agino != NULLAGINO) {
				agino = xlog_recover_process_one_iunlink(mp,
							agno, agino, bucket);
				cond_resched();
			}
		}
		xfs_buf_rele(agibp);
	}
}

STATIC void
xlog_unpack_data(
	struct xlog_rec_header	*rhead,
	char			*dp,
	struct xlog		*log)
{
	int			i, j, k;

	for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
		  i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
		*(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
		dp += BBSIZE;
	}

	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
		xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
		for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
			j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
			k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
			*(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
			dp += BBSIZE;
		}
	}
}

/*
 * CRC check, unpack and process a log record.
 */
STATIC int
xlog_recover_process(
	struct xlog		*log,
	struct hlist_head	rhash[],
	struct xlog_rec_header	*rhead,
	char			*dp,
	int			pass,
	struct list_head	*buffer_list)
{
	__le32			old_crc = rhead->h_crc;
	__le32			crc;

	crc = xlog_cksum(log, rhead, dp, be32_to_cpu(rhead->h_len));

	/*
	 * Nothing else to do if this is a CRC verification pass. Just return
	 * if this a record with a non-zero crc. Unfortunately, mkfs always
	 * sets old_crc to 0 so we must consider this valid even on v5 supers.
	 * Otherwise, return EFSBADCRC on failure so the callers up the stack
	 * know precisely what failed.
	 */
	if (pass == XLOG_RECOVER_CRCPASS) {
		if (old_crc && crc != old_crc)
			return -EFSBADCRC;
		return 0;
	}

	/*
	 * We're in the normal recovery path. Issue a warning if and only if the
	 * CRC in the header is non-zero. This is an advisory warning and the
	 * zero CRC check prevents warnings from being emitted when upgrading
	 * the kernel from one that does not add CRCs by default.
	 */
	if (crc != old_crc) {
		if (old_crc || xfs_sb_version_hascrc(&log->l_mp->m_sb)) {
			xfs_alert(log->l_mp,
		"log record CRC mismatch: found 0x%x, expected 0x%x.",
					le32_to_cpu(old_crc),
					le32_to_cpu(crc));
			xfs_hex_dump(dp, 32);
		}

		/*
		 * If the filesystem is CRC enabled, this mismatch becomes a
		 * fatal log corruption failure.
		 */
		if (xfs_sb_version_hascrc(&log->l_mp->m_sb)) {
			XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, log->l_mp);
			return -EFSCORRUPTED;
		}
	}

	xlog_unpack_data(rhead, dp, log);

	return xlog_recover_process_data(log, rhash, rhead, dp, pass,
					 buffer_list);
}

STATIC int
xlog_valid_rec_header(
	struct xlog		*log,
	struct xlog_rec_header	*rhead,
	xfs_daddr_t		blkno,
	int			bufsize)
{
	int			hlen;

	if (XFS_IS_CORRUPT(log->l_mp,
			   rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM)))
		return -EFSCORRUPTED;
	if (XFS_IS_CORRUPT(log->l_mp,
			   (!rhead->h_version ||
			   (be32_to_cpu(rhead->h_version) &
			    (~XLOG_VERSION_OKBITS))))) {
		xfs_warn(log->l_mp, "%s: unrecognised log version (%d).",
			__func__, be32_to_cpu(rhead->h_version));
		return -EFSCORRUPTED;
	}

	/*
	 * LR body must have data (or it wouldn't have been written)
	 * and h_len must not be greater than LR buffer size.
	 */
	hlen = be32_to_cpu(rhead->h_len);
	if (XFS_IS_CORRUPT(log->l_mp, hlen <= 0 || hlen > bufsize))
		return -EFSCORRUPTED;

	if (XFS_IS_CORRUPT(log->l_mp,
			   blkno > log->l_logBBsize || blkno > INT_MAX))
		return -EFSCORRUPTED;
	return 0;
}

/*
 * Read the log from tail to head and process the log records found.
 * Handle the two cases where the tail and head are in the same cycle
 * and where the active portion of the log wraps around the end of
 * the physical log separately.  The pass parameter is passed through
 * to the routines called to process the data and is not looked at
 * here.
 */
STATIC int
xlog_do_recovery_pass(
	struct xlog		*log,
	xfs_daddr_t		head_blk,
	xfs_daddr_t		tail_blk,
	int			pass,
	xfs_daddr_t		*first_bad)	/* out: first bad log rec */
{
	xlog_rec_header_t	*rhead;
	xfs_daddr_t		blk_no, rblk_no;
	xfs_daddr_t		rhead_blk;
	char			*offset;
	char			*hbp, *dbp;
	int			error = 0, h_size, h_len;
	int			error2 = 0;
	int			bblks, split_bblks;
	int			hblks, split_hblks, wrapped_hblks;
	int			i;
	struct hlist_head	rhash[XLOG_RHASH_SIZE];
	LIST_HEAD		(buffer_list);

	ASSERT(head_blk != tail_blk);
	blk_no = rhead_blk = tail_blk;

	for (i = 0; i < XLOG_RHASH_SIZE; i++)
		INIT_HLIST_HEAD(&rhash[i]);

	/*
	 * Read the header of the tail block and get the iclog buffer size from
	 * h_size.  Use this to tell how many sectors make up the log header.
	 */
	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
		/*
		 * When using variable length iclogs, read first sector of
		 * iclog header and extract the header size from it.  Get a
		 * new hbp that is the correct size.
		 */
		hbp = xlog_alloc_buffer(log, 1);
		if (!hbp)
			return -ENOMEM;

		error = xlog_bread(log, tail_blk, 1, hbp, &offset);
		if (error)
			goto bread_err1;

		rhead = (xlog_rec_header_t *)offset;

		/*
		 * xfsprogs has a bug where record length is based on lsunit but
		 * h_size (iclog size) is hardcoded to 32k. Now that we
		 * unconditionally CRC verify the unmount record, this means the
		 * log buffer can be too small for the record and cause an
		 * overrun.
		 *
		 * Detect this condition here. Use lsunit for the buffer size as
		 * long as this looks like the mkfs case. Otherwise, return an
		 * error to avoid a buffer overrun.
		 */
		h_size = be32_to_cpu(rhead->h_size);
		h_len = be32_to_cpu(rhead->h_len);
		if (h_len > h_size && h_len <= log->l_mp->m_logbsize &&
		    rhead->h_num_logops == cpu_to_be32(1)) {
			xfs_warn(log->l_mp,
		"invalid iclog size (%d bytes), using lsunit (%d bytes)",
				 h_size, log->l_mp->m_logbsize);
			h_size = log->l_mp->m_logbsize;
		}

		error = xlog_valid_rec_header(log, rhead, tail_blk, h_size);
		if (error)
			goto bread_err1;

		hblks = xlog_logrec_hblks(log, rhead);
		if (hblks != 1) {
			kmem_free(hbp);
			hbp = xlog_alloc_buffer(log, hblks);
		}
	} else {
		ASSERT(log->l_sectBBsize == 1);
		hblks = 1;
		hbp = xlog_alloc_buffer(log, 1);
		h_size = XLOG_BIG_RECORD_BSIZE;
	}

	if (!hbp)
		return -ENOMEM;
	dbp = xlog_alloc_buffer(log, BTOBB(h_size));
	if (!dbp) {
		kmem_free(hbp);
		return -ENOMEM;
	}

	memset(rhash, 0, sizeof(rhash));
	if (tail_blk > head_blk) {
		/*
		 * Perform recovery around the end of the physical log.
		 * When the head is not on the same cycle number as the tail,
		 * we can't do a sequential recovery.
		 */
		while (blk_no < log->l_logBBsize) {
			/*
			 * Check for header wrapping around physical end-of-log
			 */
			offset = hbp;
			split_hblks = 0;
			wrapped_hblks = 0;
			if (blk_no + hblks <= log->l_logBBsize) {
				/* Read header in one read */
				error = xlog_bread(log, blk_no, hblks, hbp,
						   &offset);
				if (error)
					goto bread_err2;
			} else {
				/* This LR is split across physical log end */
				if (blk_no != log->l_logBBsize) {
					/* some data before physical log end */
					ASSERT(blk_no <= INT_MAX);
					split_hblks = log->l_logBBsize - (int)blk_no;
					ASSERT(split_hblks > 0);
					error = xlog_bread(log, blk_no,
							   split_hblks, hbp,
							   &offset);
					if (error)
						goto bread_err2;
				}

				/*
				 * Note: this black magic still works with
				 * large sector sizes (non-512) only because:
				 * - we increased the buffer size originally
				 *   by 1 sector giving us enough extra space
				 *   for the second read;
				 * - the log start is guaranteed to be sector
				 *   aligned;
				 * - we read the log end (LR header start)
				 *   _first_, then the log start (LR header end)
				 *   - order is important.
				 */
				wrapped_hblks = hblks - split_hblks;
				error = xlog_bread_noalign(log, 0,
						wrapped_hblks,
						offset + BBTOB(split_hblks));
				if (error)
					goto bread_err2;
			}
			rhead = (xlog_rec_header_t *)offset;
			error = xlog_valid_rec_header(log, rhead,
					split_hblks ? blk_no : 0, h_size);
			if (error)
				goto bread_err2;

			bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
			blk_no += hblks;

			/*
			 * Read the log record data in multiple reads if it
			 * wraps around the end of the log. Note that if the
			 * header already wrapped, blk_no could point past the
			 * end of the log. The record data is contiguous in
			 * that case.
			 */
			if (blk_no + bblks <= log->l_logBBsize ||
			    blk_no >= log->l_logBBsize) {
				rblk_no = xlog_wrap_logbno(log, blk_no);
				error = xlog_bread(log, rblk_no, bblks, dbp,
						   &offset);
				if (error)
					goto bread_err2;
			} else {
				/* This log record is split across the
				 * physical end of log */
				offset = dbp;
				split_bblks = 0;
				if (blk_no != log->l_logBBsize) {
					/* some data is before the physical
					 * end of log */
					ASSERT(!wrapped_hblks);
					ASSERT(blk_no <= INT_MAX);
					split_bblks =
						log->l_logBBsize - (int)blk_no;
					ASSERT(split_bblks > 0);
					error = xlog_bread(log, blk_no,
							split_bblks, dbp,
							&offset);
					if (error)
						goto bread_err2;
				}

				/*
				 * Note: this black magic still works with
				 * large sector sizes (non-512) only because:
				 * - we increased the buffer size originally
				 *   by 1 sector giving us enough extra space
				 *   for the second read;
				 * - the log start is guaranteed to be sector
				 *   aligned;
				 * - we read the log end (LR header start)
				 *   _first_, then the log start (LR header end)
				 *   - order is important.
				 */
				error = xlog_bread_noalign(log, 0,
						bblks - split_bblks,
						offset + BBTOB(split_bblks));
				if (error)
					goto bread_err2;
			}

			error = xlog_recover_process(log, rhash, rhead, offset,
						     pass, &buffer_list);
			if (error)
				goto bread_err2;

			blk_no += bblks;
			rhead_blk = blk_no;
		}

		ASSERT(blk_no >= log->l_logBBsize);
		blk_no -= log->l_logBBsize;
		rhead_blk = blk_no;
	}

	/* read first part of physical log */
	while (blk_no < head_blk) {
		error = xlog_bread(log, blk_no, hblks, hbp, &offset);
		if (error)
			goto bread_err2;

		rhead = (xlog_rec_header_t *)offset;
		error = xlog_valid_rec_header(log, rhead, blk_no, h_size);
		if (error)
			goto bread_err2;

		/* blocks in data section */
		bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
		error = xlog_bread(log, blk_no+hblks, bblks, dbp,
				   &offset);
		if (error)
			goto bread_err2;

		error = xlog_recover_process(log, rhash, rhead, offset, pass,
					     &buffer_list);
		if (error)
			goto bread_err2;

		blk_no += bblks + hblks;
		rhead_blk = blk_no;
	}

 bread_err2:
	kmem_free(dbp);
 bread_err1:
	kmem_free(hbp);

	/*
	 * Submit buffers that have been added from the last record processed,
	 * regardless of error status.
	 */
	if (!list_empty(&buffer_list))
		error2 = xfs_buf_delwri_submit(&buffer_list);

	if (error && first_bad)
		*first_bad = rhead_blk;

	/*
	 * Transactions are freed at commit time but transactions without commit
	 * records on disk are never committed. Free any that may be left in the
	 * hash table.
	 */
	for (i = 0; i < XLOG_RHASH_SIZE; i++) {
		struct hlist_node	*tmp;
		struct xlog_recover	*trans;

		hlist_for_each_entry_safe(trans, tmp, &rhash[i], r_list)
			xlog_recover_free_trans(trans);
	}

	return error ? error : error2;
}

/*
 * Do the recovery of the log.  We actually do this in two phases.
 * The two passes are necessary in order to implement the function
 * of cancelling a record written into the log.  The first pass
 * determines those things which have been cancelled, and the
 * second pass replays log items normally except for those which
 * have been cancelled.  The handling of the replay and cancellations
 * takes place in the log item type specific routines.
 *
 * The table of items which have cancel records in the log is allocated
 * and freed at this level, since only here do we know when all of
 * the log recovery has been completed.
 */
STATIC int
xlog_do_log_recovery(
	struct xlog	*log,
	xfs_daddr_t	head_blk,
	xfs_daddr_t	tail_blk)
{
	int		error, i;

	ASSERT(head_blk != tail_blk);

	/*
	 * First do a pass to find all of the cancelled buf log items.
	 * Store them in the buf_cancel_table for use in the second pass.
	 */
	log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE *
						 sizeof(struct list_head),
						 0);
	for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
		INIT_LIST_HEAD(&log->l_buf_cancel_table[i]);

	error = xlog_do_recovery_pass(log, head_blk, tail_blk,
				      XLOG_RECOVER_PASS1, NULL);
	if (error != 0) {
		kmem_free(log->l_buf_cancel_table);
		log->l_buf_cancel_table = NULL;
		return error;
	}
	/*
	 * Then do a second pass to actually recover the items in the log.
	 * When it is complete free the table of buf cancel items.
	 */
	error = xlog_do_recovery_pass(log, head_blk, tail_blk,
				      XLOG_RECOVER_PASS2, NULL);
#ifdef DEBUG
	if (!error) {
		int	i;

		for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
			ASSERT(list_empty(&log->l_buf_cancel_table[i]));
	}
#endif	/* DEBUG */

	kmem_free(log->l_buf_cancel_table);
	log->l_buf_cancel_table = NULL;

	return error;
}

/*
 * Do the actual recovery
 */
STATIC int
xlog_do_recover(
	struct xlog		*log,
	xfs_daddr_t		head_blk,
	xfs_daddr_t		tail_blk)
{
	struct xfs_mount	*mp = log->l_mp;
	struct xfs_buf		*bp = mp->m_sb_bp;
	struct xfs_sb		*sbp = &mp->m_sb;
	int			error;

	trace_xfs_log_recover(log, head_blk, tail_blk);

	/*
	 * First replay the images in the log.
	 */
	error = xlog_do_log_recovery(log, head_blk, tail_blk);
	if (error)
		return error;

	/*
	 * If IO errors happened during recovery, bail out.
	 */
	if (XFS_FORCED_SHUTDOWN(mp))
		return -EIO;

	/*
	 * We now update the tail_lsn since much of the recovery has completed
	 * and there may be space available to use.  If there were no extent
	 * or iunlinks, we can free up the entire log and set the tail_lsn to
	 * be the last_sync_lsn.  This was set in xlog_find_tail to be the
	 * lsn of the last known good LR on disk.  If there are extent frees
	 * or iunlinks they will have some entries in the AIL; so we look at
	 * the AIL to determine how to set the tail_lsn.
	 */
	xlog_assign_tail_lsn(mp);

	/*
	 * Now that we've finished replaying all buffer and inode updates,
	 * re-read the superblock and reverify it.
	 */
	xfs_buf_lock(bp);
	xfs_buf_hold(bp);
	error = _xfs_buf_read(bp, XBF_READ);
	if (error) {
		if (!XFS_FORCED_SHUTDOWN(mp)) {
			xfs_buf_ioerror_alert(bp, __this_address);
			ASSERT(0);
		}
		xfs_buf_relse(bp);
		return error;
	}

	/* Convert superblock from on-disk format */
	xfs_sb_from_disk(sbp, bp->b_addr);
	xfs_buf_relse(bp);

	/* re-initialise in-core superblock and geometry structures */
	xfs_reinit_percpu_counters(mp);
	error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
	if (error) {
		xfs_warn(mp, "Failed post-recovery per-ag init: %d", error);
		return error;
	}
	mp->m_alloc_set_aside = xfs_alloc_set_aside(mp);

	xlog_recover_check_summary(log);

	/* Normal transactions can now occur */
	log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
	return 0;
}

/*
 * Perform recovery and re-initialize some log variables in xlog_find_tail.
 *
 * Return error or zero.
 */
int
xlog_recover(
	struct xlog	*log)
{
	xfs_daddr_t	head_blk, tail_blk;
	int		error;

	/* find the tail of the log */
	error = xlog_find_tail(log, &head_blk, &tail_blk);
	if (error)
		return error;

	/*
	 * The superblock was read before the log was available and thus the LSN
	 * could not be verified. Check the superblock LSN against the current
	 * LSN now that it's known.
	 */
	if (xfs_sb_version_hascrc(&log->l_mp->m_sb) &&
	    !xfs_log_check_lsn(log->l_mp, log->l_mp->m_sb.sb_lsn))
		return -EINVAL;

	if (tail_blk != head_blk) {
		/* There used to be a comment here:
		 *
		 * disallow recovery on read-only mounts.  note -- mount
		 * checks for ENOSPC and turns it into an intelligent
		 * error message.
		 * ...but this is no longer true.  Now, unless you specify
		 * NORECOVERY (in which case this function would never be
		 * called), we just go ahead and recover.  We do this all
		 * under the vfs layer, so we can get away with it unless
		 * the device itself is read-only, in which case we fail.
		 */
		if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
			return error;
		}

		/*
		 * Version 5 superblock log feature mask validation. We know the
		 * log is dirty so check if there are any unknown log features
		 * in what we need to recover. If there are unknown features
		 * (e.g. unsupported transactions, then simply reject the
		 * attempt at recovery before touching anything.
		 */
		if (XFS_SB_VERSION_NUM(&log->l_mp->m_sb) == XFS_SB_VERSION_5 &&
		    xfs_sb_has_incompat_log_feature(&log->l_mp->m_sb,
					XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)) {
			xfs_warn(log->l_mp,
"Superblock has unknown incompatible log features (0x%x) enabled.",
				(log->l_mp->m_sb.sb_features_log_incompat &
					XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
			xfs_warn(log->l_mp,
"The log can not be fully and/or safely recovered by this kernel.");
			xfs_warn(log->l_mp,
"Please recover the log on a kernel that supports the unknown features.");
			return -EINVAL;
		}

		/*
		 * Delay log recovery if the debug hook is set. This is debug
		 * instrumention to coordinate simulation of I/O failures with
		 * log recovery.
		 */
		if (xfs_globals.log_recovery_delay) {
			xfs_notice(log->l_mp,
				"Delaying log recovery for %d seconds.",
				xfs_globals.log_recovery_delay);
			msleep(xfs_globals.log_recovery_delay * 1000);
		}

		xfs_notice(log->l_mp, "Starting recovery (logdev: %s)",
				log->l_mp->m_logname ? log->l_mp->m_logname
						     : "internal");

		error = xlog_do_recover(log, head_blk, tail_blk);
		log->l_flags |= XLOG_RECOVERY_NEEDED;
	}
	return error;
}

/*
 * In the first part of recovery we replay inodes and buffers and build
 * up the list of extent free items which need to be processed.  Here
 * we process the extent free items and clean up the on disk unlinked
 * inode lists.  This is separated from the first part of recovery so
 * that the root and real-time bitmap inodes can be read in from disk in
 * between the two stages.  This is necessary so that we can free space
 * in the real-time portion of the file system.
 */
int
xlog_recover_finish(
	struct xlog	*log)
{
	/*
	 * Now we're ready to do the transactions needed for the
	 * rest of recovery.  Start with completing all the extent
	 * free intent records and then process the unlinked inode
	 * lists.  At this point, we essentially run in normal mode
	 * except that we're still performing recovery actions
	 * rather than accepting new requests.
	 */
	if (log->l_flags & XLOG_RECOVERY_NEEDED) {
		int	error;
		error = xlog_recover_process_intents(log);
		if (error) {
			/*
			 * Cancel all the unprocessed intent items now so that
			 * we don't leave them pinned in the AIL.  This can
			 * cause the AIL to livelock on the pinned item if
			 * anyone tries to push the AIL (inode reclaim does
			 * this) before we get around to xfs_log_mount_cancel.
			 */
			xlog_recover_cancel_intents(log);
			xfs_alert(log->l_mp, "Failed to recover intents");
			return error;
		}

		/*
		 * Sync the log to get all the intents out of the AIL.
		 * This isn't absolutely necessary, but it helps in
		 * case the unlink transactions would have problems
		 * pushing the intents out of the way.
		 */
		xfs_log_force(log->l_mp, XFS_LOG_SYNC);

		xlog_recover_process_iunlinks(log);

		xlog_recover_check_summary(log);

		xfs_notice(log->l_mp, "Ending recovery (logdev: %s)",
				log->l_mp->m_logname ? log->l_mp->m_logname
						     : "internal");
		log->l_flags &= ~XLOG_RECOVERY_NEEDED;
	} else {
		xfs_info(log->l_mp, "Ending clean mount");
	}
	return 0;
}

void
xlog_recover_cancel(
	struct xlog	*log)
{
	if (log->l_flags & XLOG_RECOVERY_NEEDED)
		xlog_recover_cancel_intents(log);
}

#if defined(DEBUG)
/*
 * Read all of the agf and agi counters and check that they
 * are consistent with the superblock counters.
 */
STATIC void
xlog_recover_check_summary(
	struct xlog	*log)
{
	xfs_mount_t	*mp;
	xfs_buf_t	*agfbp;
	xfs_buf_t	*agibp;
	xfs_agnumber_t	agno;
	uint64_t	freeblks;
	uint64_t	itotal;
	uint64_t	ifree;
	int		error;

	mp = log->l_mp;

	freeblks = 0LL;
	itotal = 0LL;
	ifree = 0LL;
	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
		error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
		if (error) {
			xfs_alert(mp, "%s agf read failed agno %d error %d",
						__func__, agno, error);
		} else {
			struct xfs_agf	*agfp = agfbp->b_addr;

			freeblks += be32_to_cpu(agfp->agf_freeblks) +
				    be32_to_cpu(agfp->agf_flcount);
			xfs_buf_relse(agfbp);
		}

		error = xfs_read_agi(mp, NULL, agno, &agibp);
		if (error) {
			xfs_alert(mp, "%s agi read failed agno %d error %d",
						__func__, agno, error);
		} else {
			struct xfs_agi	*agi = agibp->b_addr;

			itotal += be32_to_cpu(agi->agi_count);
			ifree += be32_to_cpu(agi->agi_freecount);
			xfs_buf_relse(agibp);
		}
	}
}
#endif /* DEBUG */

Privacy Policy